Please wait a minute...
 
材料工程  2010, Vol. 0 Issue (1): 47-53    
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
纳米粒子改性环氧树脂及其复合材料力学性能研究
刘刚1, 张代军1, 张晖2, 安学锋1, 益小苏1, 张忠2
1. 北京航空材料研究院, 先进复合材料国防科技重点实验室, 北京, 100095;
2. 国家纳米科学中心, 北京, 100190
Mechanical Properties of Nanoparticles Modified Epoxy Matrix and Composites
LIU Gang1, ZHANG Dai-jun1, ZHANG Hui2, AN Xue-feng1, YI Xiao-su1, ZHANG Zhong2
1. National Key Laboratory of Advanced Composites, Beijing Institute of Aeronautical Materials, Beijing 100095, China;
2. National Center for Nanoscience and Technology, Beijing 100190, China
全文: PDF(2060 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 通过机械共混法制备了Al2O3纳米粒子改性环氧树脂基体,研究了纳米粒子含量对改性树脂基体力学性能的影响,并采用紧凑拉伸实验研究了纳米粒子改性环氧树脂的断裂韧性.利用改性树脂制备了玻璃纤维增强复合材料,研究了改性复合材料的力学性能与纳米粒子含量之间的关系.结果表明:纳米粒子的加入明显改善了环氧树脂基体的断裂韧性并且有助于提高树脂与纤维之间的界面粘接强度,因而使改性复合材料的层间性能明显提高而其他力学性能基本不变.
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘刚
张代军
张晖
安学锋
益小苏
张忠
关键词 纳米粒子环氧树脂复合材料力学性能    
Abstract:The epoxy matrix toughened by nano-Al2O3 was prepared by mechanical mixing method.The mechanical properties of epoxy matrix with different nano-Al2O3 content were researched.The fracture toughness of the epoxy matrix was studied by compact tension test method.The glass-fiber reinforced composites were fabricated using the toughened epoxy matrix and the mechanical properties of the composites were investigated.The results indicate that the improved fracture toughness of epoxy matrix and the enhanced bonding between fibers and resin matrix can be attributed to the nanoparticles.Therefore,the interlaminar shear strength of the composites is improved obviously,while the other mechanical properties increase faintly.
Key wordsnanoparticle    epoxy resin    composite    mechanical property
收稿日期: 2009-03-27      出版日期: 2010-01-20
中图分类号:  TB332  
基金资助:先进复合材料国防科技重点实验室基金(9140C440104070C4404)
作者简介: 刘刚(1978- ),男,博士,先进树脂基复合材料专业,联系地址:北京81信箱3分箱(100095),E-mail:liugang@iccas.ac.cn
引用本文:   
刘刚, 张代军, 张晖, 安学锋, 益小苏, 张忠. 纳米粒子改性环氧树脂及其复合材料力学性能研究[J]. 材料工程, 2010, 0(1): 47-53.
LIU Gang, ZHANG Dai-jun, ZHANG Hui, AN Xue-feng, YI Xiao-su, ZHANG Zhong. Mechanical Properties of Nanoparticles Modified Epoxy Matrix and Composites. Journal of Materials Engineering, 2010, 0(1): 47-53.
链接本文:  
http://jme.biam.ac.cn/CN/      或      http://jme.biam.ac.cn/CN/Y2010/V0/I1/47
[1] HSU Y G,LIANG,C W.Properties and behavior of CTBN-modified epoxy with IPN structure[J].Journal of Applied Polymer Science,2007,106:1576-1584.
[2] KONG J,NING R C,TANG Y S.Study on modification of epoxy resins with acrylate liquid rubber containing pendant epoxy groups[J].Journal of Materials Science,2006,41(5):1639-1641.
[3] MIMURA K,ITO H,FUJIOKA H.Improvement of thermal and mechanical properties by control of morphologies in PES-modified epoxy resins[J].Polymer,2000,41:4451-4459.
[4] FRANCIS B,THOMAS S,JOSE J,et al.Hydroxyl terminated poly(ether ether ketone)with pendent methyl group toughened epoxy resin:miscibility,morphology and mechanical properties[J].Polymer,2005,46:12372-12385.
[5] INOUE T.Reaction-induced phase decomposition in polymer blends[J].Progress in Polymer Science,1995,20:119-153.
[6] 张明,罗业,党国栋,等.含氟聚醚醚酮增韧环氧树脂相形貌与性能研究[J].热固性树脂,2008,23(6):1-4.
[7] ZHANG Hui,TANG Long-cheng,ZHANG Zhong,et al.Fracture behaviours of in situ silica nanoparticle-filled epoxy at different temperatures[J].Polymer,2008,49:3816-3825.
[8] RICHARD D W,MALHOTRA V M.Rupture of nanoparticle agglomerates and formulation of Al_2O_3-epoxy nanocomposites using ultrasonic cavitation approach:effects on the structural and mechanical properties[J].Polymer Engineering and Science,2006,10:426-430.
[9] ZHENG Ya-ping,ZHENG Ying,NING Rong-chang.Effects of nanoparticles SiO2 on the performance of nanocomposites[J].Materials Letters,2003,57:2940-2944.
[10] ZHENG Ya-ping,NING Rong-chang,ZHENG Ying.Study of SiO2 nanoparticles on the improved performance of epoxy and fiber composites[J].Journal of Reinforced Plastics and Composites,2005,24:223-233.
[11] ZHU J B,YANG X J,CUI Z D,et al.Preparation and properties of nano-SiO2/epoxy composites cured by mannich amine[J].Journal of Macromolecular Science,Part B:Physics,2006,45(5):811-820.
[12] ZHANG H,ZHANG Z,FRIEDRICH K,et al.Property improvements of in situ epoxy nanocomposites with reduced interparticle distance at high nanosilica content[J].Acta Materialia,2006,54:1833-1842.
[13] KOJIMA Y,USUKI A,KAWASUMI M,et al.Mechanical-properties of nylon 6-clay hybrid[J].Journal of Materials Research,1993,8(5):1185-1189.
[14] CHEN C,BENSON-TOLLE T,BAUR J W,et al.Processing-morphology regulation of epoxy/layered-silicate nanocomposites[J].Journal of Applied Polymer Science,2008,108(5):3324-3333.
[15] HUSSAIN M,NAKAHIRA A,NISHIJIMA S,et al.Mechanical property improvement of carbon fiber reinforced epoxy composites by Al2O3 filler dispersion[J].Materials Letters,1996,27:21-25.
[16] SEIPENBUSCH M,FROESCHKE S,WEBER A P,et al.Investigations on the fracturing of nanoparticle agglomerates-first results[J].J Proc Mech Eng Part E,2002,216:219-225.
[17] BERLIN A A,VOLFSON S A,ENIKOLOPIAN N S,et al.Principles of Polymer Composites[M].Berlin:Springer-Verlag,1986.
[18] WANG Wen-hai,KEYA SADEGHIPOUR,GEORGE BARAN.Finite element analysis of the effect of an interphase on toughening of a particle-reinforced polymer composite[J].Composites:Part A,2008,39:956-964.
[19] JIANG Z,HUI ZHANG,ZHONG ZHANG,et al.Improved bonding between PAN-based carbon fibers and fullerene-modified epoxy matrix[J].Composites:Part A,2008,39(11):1762-1767.
[20] HUSSAIN M,NAKAHIRA A,NISHIJIMA S,et al.Evaluation of mechanical behavior of CFRC transverse to the fiber direction at room and cryogenic temperature[J].Composites Part A-Applied Science and Manufacturing,2000,31(2):173-179.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 许文龙, 陈爽, 张津红, 刘会娥, 朱佳梦, 刁帅, 于安然. 羧甲基纤维素-石墨烯复合气凝胶的制备及吸附研究[J]. 材料工程, 2020, 48(9): 77-85.
[3] 张成林, 董抒华, 李丽君, 田龙雨, 谭洪生. E-玻纤/环氧树脂预浸料固化动力学及其动态热力学性能[J]. 材料工程, 2020, 48(9): 152-157.
[4] 曹弘毅, 姜明顺, 马蒙源, 张法业, 张雷, 隋青美, 贾磊. 复合材料层压板分层缺陷相控阵超声检测参数优化方法[J]. 材料工程, 2020, 48(9): 158-165.
[5] 栾建泽, 那景新, 谭伟, 慕文龙, 申浩, 秦国锋. 铝合金-BFRP粘接接头的服役高温老化力学性能及失效预测[J]. 材料工程, 2020, 48(9): 166-172.
[6] 曾成均, 刘立武, 边文凤, 冷劲松, 刘彦菊. 激励响应复合材料的4D打印及其应用研究进展[J]. 材料工程, 2020, 48(8): 1-13.
[7] 魏化震, 钟蔚华, 于广. 高分子复合材料在装甲防护领域的研究与应用进展[J]. 材料工程, 2020, 48(8): 25-32.
[8] 包建文, 钟翔屿, 张代军, 彭公秋, 李伟东, 石峰晖, 李晔, 姚锋, 常海峰. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8): 33-48.
[9] 肇研, 刘寒松. 连续纤维增强高性能热塑性树脂基复合材料的制备与应用[J]. 材料工程, 2020, 48(8): 49-61.
[10] 陈利, 焦伟, 王心淼, 刘俊岭. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8): 62-72.
[11] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[12] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[13] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[14] 张波波, 张文娟, 杜雪岩, 王有良. 铁基磁性纳米材料吸附废水中重金属离子研究进展[J]. 材料工程, 2020, 48(7): 93-102.
[15] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn