Please wait a minute...
 
材料工程  2010, Vol. 0 Issue (3): 79-83    
  工艺 本期目录 | 过刊浏览 | 高级检索 |
阳极氧化TiO2纳米线生长研究
侯峰1, 阴育新2, 谭欣2, 赵林2
1. 天津大学材料学院, 天津, 300072;
2. 天津大学化工学院, 天津, 300072
Fabrication TiO2 Nanowires by Electrochemical Anodization
HOU Feng1, YIN Yu-xin2, TAN Xin2, ZHAO Lin2
1. School of Material Science and Engineering, Tianjin University, Tianjin, 300072, China;
2. School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
全文: PDF(1315 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用NH4F-乙二醇-H2O溶液体系的电化学阳极氧化法,在金属钛基板上形成厚度为0.9~36μm的TiO2纳米管阵列.研究了阳极氧化电压、氧化时间及电解液的组成对TiO2纳米管阵列结构的影响.结果表明,当醇水体积比为39:1时,60V电压下氧化2h,TiO2纳米管顶部的氧化层在缺陷处发生二次击穿溶解,产生自组装的孔核,场助溶解驱动力使纳米管顶部在孔核处沿管轴向垂直劈裂,形成直径20nm、长度可达几微米的TiO2纳米线.
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
侯峰
阴育新
谭欣
赵林
关键词 TiO2纳米线阳极氧化NH4F-乙二醇-H2OTiO2纳米管阵列    
Abstract:Anodization of titanium in a fluorinated glycol and H2O electrolyte was investigated.The prepared anodic film had nanotube-array architecture with 0.9-36μm tube length.We discuss in details the influence of anodic voltage,anodic time and electrolyte composition on the structure of titania nanotubes.The result showed that TiO2 nanowires with a diameter of 20nm and a length up to several micron only can be synthesized in NH4F/glycol solution with a small amount of water(glycol:H2O=39:1),60V anodic voltage and 2h anodic time.The nanowires originated from the vertical splitting of anodically grown nanotubes.
Key wordsTiO2 nanowire    anodization    NH4F-glycol-H2O electrolyte    TiO2 nanotube array
收稿日期: 2009-01-20      出版日期: 2010-03-20
中图分类号:  O644  
基金资助:国家自然科学基金项目(20776103);博士后基金资助项目(20080440678)
作者简介: 侯峰(1972- ),男,副教授,从事纳米材料及功能陶瓷方面研究工作,联系地址:天津大学材料学院(300072),E-mail:houf@tju.edu.cn
引用本文:   
侯峰, 阴育新, 谭欣, 赵林. 阳极氧化TiO2纳米线生长研究[J]. 材料工程, 2010, 0(3): 79-83.
HOU Feng, YIN Yu-xin, TAN Xin, ZHAO Lin. Fabrication TiO2 Nanowires by Electrochemical Anodization. Journal of Materials Engineering, 2010, 0(3): 79-83.
链接本文:  
http://jme.biam.ac.cn/CN/      或      http://jme.biam.ac.cn/CN/Y2010/V0/I3/79
[1] ZHU K,NEALE N R,MIEDANER A,etal.Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays[J].Nano Letters,2007,7(1):69-71.
[2] YIN Y X,JIN Z G,HOU F,Enhanced solar water-splitting efficiency using core/sheath heterostructure CdS/TiO2 nanotube arrays[J].Nanotechnology,2007,18(49):495608.
[3] BERANEK R,TSUCHIYA H,SUGISHIMA T,etal.Enhancement and limits of the photoelectrochemical response from anodic TiO2 nanotubes[J].Appl Phys Lett,2005,87(24):243114.
[4] 阴育新,靳正国,侯峰.甘油-DMSO-H_2O中阳极氧化TiO2纳米管阵列的生长与性能[J].物理化学学报,2007,23(11):1797-1802.
[5] ALBU S P,GHICOV A,MACAK J M,etal.Self-organized,free-standing TiO2 nanotube membrane for flow-through photocatalytic applications[J].Nano Letters,2007,7(5):1286-1289.
[6] QUAN X,YANG S G,RUAN X L,etal.Preparation of titania nanotubes and their environmental applications as electrode[J].Environmental Science & Technology,2005,39(10):3770-3775.
[7] ZHUANG H F,LIN C J,LAI Y K,etal.Some critical structure factors of titanium oxide manotube array in its photocatalytic activity[J].Environ Sci Technol,2007,41(13):4735-4740.
[8] VARGHESE O K,GONG D W,PAULOSE M,etal.Hydrogen sensing using titania nanotubes[J].Sensors and Actuators B,2003,93(1-3):338-344.
[9] ZWILLING V,DARQUE-CERETTI E,BOUTRY-FORVEILLE A,etal.Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy[J].Surface and Interface Analysis,1999,27(7):629-637.
[10] GONG D,GRIMES C A,VARGHESE O K,etal.Titanium oxide nanotube arrays prepared by anodic oxidation[J].Journal of Materials Research,2001,16(12):3331-3334.
[11] MACAK J M,TSUCHIYA H,SCHMUKI P,High-aspect-ratio TiO2 nanotubes by anodization of titanium[J].Angewandte Chemie International Edition,2005,44(14):2100-2102.
[12] TSUCHIYA H,MACAK J M,TAVEIRA L,etal.Self-organized TiO2 nanotubes prepared in ammonium fluoride containing acetic acid electrolytes[J].Electrochemistry Communications,2005,7(6):576-580.
[13] RUAN C M,PAULOSE M,VARGHESE O K,etal.Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte[J].Journal of Physical Chemistry B,2005,109(33):15754-15759.
[14] PAULOSE M,SHANKAR K,YORIYA S,etal.Anodic growth of highly ordered TiO2 nanotube arrays to 134μm in length[J].Journal of Physical Chemistry B,2006,110(33):16179-16184.
[15] MACAK J M,TSUCHIYA H,TAVEIRA L,etal.Smooth anodic TiO2 nanotubes[J].Angewandte Chemie International Edition,2005,44(45):7463-7465.
[16] YIN Y X,JIN Z G,HOU F,etal.Synthesis and morphology of TiO2 nanotube arrays by anodic oxidation using modified glycerol-based electrolytes[J].J Am Ceram Soc,2007,90:2384-2389.
[17] SHANKAR K,MOR G K,PRAKASAM H E,etal.Highly-ordered TiO2 nanotube arrays up to 220 μm in length:use in water photoelectrolysis and dye-sensitized solar cells[J].Nanotechnology,2007,18(6):065707(1-11).
[1] 高亚辉, 尹国杰, 张少文, 王璐, 孟巧静, 李欣栋. 电化学法制备石墨烯的研究进展[J]. 材料工程, 2020, 48(8): 84-100.
[2] 王朴, 杜继涛. 电流密度对水热电化学沉积HA涂层性能的影响[J]. 材料工程, 2018, 46(4): 58-65.
[3] 陈高红, 胡远森, 于美, 刘建华, 李国爱. 包铝层和氧化时间对2E12铝合金硫酸阳极氧化及膜层性能的影响[J]. 材料工程, 2017, 45(7): 19-26.
[4] 魏红阳, 常萌蕾, 陈东初, 王梅丰, 叶秀芳. 太阳能吸收AAO复合氧化膜的制备与性能[J]. 材料工程, 2017, 45(11): 42-48.
[5] 郑顺丽, 李澄, 项腾飞, 胡玮, 丁诗炳, 王晶, 刘盼金. 阳极氧化法制备铝基超疏水涂层及其稳定性和耐蚀性的研究[J]. 材料工程, 2017, 45(10): 71-78.
[6] 骆晨, Sergiu P. Albu, 孙志华, 汤智慧, 陆峰, Xiaorong Zhou. 硼酸-硫酸阳极氧化2A97 Al-Cu-Li合金在热带海洋大气环境中的初期腐蚀机理[J]. 材料工程, 2016, 44(9): 8-15.
[7] 刘慧丛, 李峰, 张建周, 姬振江, 王萌, 朱立群. 硅溶胶对LY12CZ铝合金硼硫酸阳极氧化的影响[J]. 材料工程, 2016, 44(7): 49-53.
[8] 杨淑敏, 李海涛, 顾建军, 韩伟, 杨巍, 岂云开. 彩色多孔氧化铝薄膜的制备和光学特性[J]. 材料工程, 2015, 43(4): 30-36.
[9] 赵斯琴, 娜米拉, 长山. 钛酸钠纳米线制备TiO2纳米线的反应条件[J]. 材料工程, 2015, 43(12): 58-62.
[10] 王晨玥, 杨文秀, 张洪敏, 王莼, 汪涛. 纯钛基体长效超疏水表面的低成本制备[J]. 材料工程, 2015, 43(11): 13-18.
[11] 于美, 马荣豹, 刘建华, 李松梅, 王一博, 刘英智. 硝酸铈封闭对2A12铝合金己二酸-硫酸阳极氧化膜耐蚀性的影响[J]. 材料工程, 2015, 43(1): 24-29.
[12] 李朋, 赵昆渝, 郭军, 张晓娟, 戴丹, 黄峰. TiO2纳米孔到纳米管结构转变的因素及其机理研究[J]. 材料工程, 2014, 0(1): 58-63,74.
[13] 杨勇进, 张晓云, 刘明辉. TC4-DT钛合金与异种材料接触腐蚀与防护研究[J]. 材料工程, 2012, 0(12): 55-60.
[14] 王学华, 陈归, 李承勇, 杨亮, 曹宏, 周伟民. 交流电化学沉积铜纳米线阵列及其机理探讨[J]. 材料工程, 2010, 0(8): 20-23.
[15] 于美, 江武, 刘建华, 李松梅, 李明. 着色处理对铝合金阳极氧化膜光学性能影响的研究[J]. 材料工程, 2010, 0(7): 72-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn