Please wait a minute...
 
材料工程  2010, Vol. 0 Issue (9): 33-39    
  工艺 本期目录 | 过刊浏览 | 高级检索 |
半连续铸造AZ31B镁合金连续热轧变形行为的数值模拟
余琨, 蔡志勇, 王晓艳, 史褆, 黎文献
中南大学, 材料科学与工程学院, 长沙, 410083
Simulation of Multi-pass Hot Rolling Process of Direct-chilled AZ31B Magnesium Alloy
YU Kun, CAI Zhi-yong, WANG Xiao-yan, SHI Ti, LI Wen-xian
School of Materials Science and Engineering, Central South University, Changsha 410083, China
全文: PDF(860 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 在DEFORMTM软件平台上采用热/力耦合刚塑性有限元法,结合生产实际的压力加工工艺,对半连续铸造AZ31B镁合金11个道次的连续热轧变形过程中应力场、应变场与温度场的变化规律进行数值模拟.结果表明:变形过程中AZ31B镁合金变形体内的应力、应变和温度沿试样厚度方向分布不均匀.在该合金铸锭表面与轧辊接触的部位具有较高的应力,引起表面的应变增大,而铸锭中心部位的应力相对较小,应变也较小.在连续的每个道次的热轧过程中,轧辊与铸锭刚接触时接触部位的应力最大,轧制中期,应力变化不大,轧制后期应力明显减小;第9道次变形后,等效应变沿试样厚度方向分布变得较均匀;随着轧制道次的增加,变形区域内的应力逐渐增大.对比AZ31B合金样品多道次热轧行为的实验模拟和数值分析可知,实验结果与数值模拟结果能较好吻合,在较低应变速率(0.01,0.1s-1)条件下,合金的塑性变形流变应力随着道次的增加逐渐增大并出现一个稳态阶段;在较高应变速率(5,10s-1)条件下,变形的前3道次的加工硬化严重,随后有一个明显的道次间的退火软化阶段.
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余琨
蔡志勇
王晓艳
史褆
黎文献
关键词 AZ31B镁合金多道次热轧变形流变应力有限元模拟    
Abstract:Based on practically press-working technology,the eleven-pass continuous hot rolling process of direct-chilled AZ31B magnesium alloy with the distributions of stress field,strain field and temperature field was simulated using rigid-plastic thermal-mechanic finite element method(FEM)with a DEFORMTM software.The results show that the stress,strain and temperature distribute inhomogenously along the thickness direction of the ingot during the hot rolling process.Great strain value is obtained as a result of high stress at the surface where the AZ31B alloy ingot contacts with the mill roller.But the stress and strain are relatively low at the centre of the alloy ingot.During a single hot rolling within the continuous process,stress obtains a maximum value when the ingot first touches the mill roller.The stress changes slightly during the rolling process but will decrease at the end of rolling.The equivalent stress distributes homogeneously after hot rolling 9 passes,and increases gradually with the increasing of pass.Comparisons show that experimental data get a good match with numerical simulation results during multi-pass hot rolling of AZ31B alloy.The flow stress of multi-pass increases gradually and reaches a steady-state subsequently at low strain rates(0.01,0.1s-1).But work hardening is obviously at the first three pass at high strain rates(5,10s-1),and then evidently softening occurs between the passes.
Key wordsAZ31B magnesium alloy    multi-pass hot rolling    flow stress    finite element method
收稿日期: 2009-03-02      出版日期: 2010-09-20
中图分类号:  TG146.2  
基金资助:“十一五”国家科技支撑计划资助项目(2006BAE04B02-3)
作者简介: 余琨(1974-),男,博士,副教授,材料学专业,联系地址:湖南省长沙市中南大学材料学院(410083),E-mail:kunyugroup@163.com
引用本文:   
余琨, 蔡志勇, 王晓艳, 史褆, 黎文献. 半连续铸造AZ31B镁合金连续热轧变形行为的数值模拟[J]. 材料工程, 2010, 0(9): 33-39.
YU Kun, CAI Zhi-yong, WANG Xiao-yan, SHI Ti, LI Wen-xian. Simulation of Multi-pass Hot Rolling Process of Direct-chilled AZ31B Magnesium Alloy. Journal of Materials Engineering, 2010, 0(9): 33-39.
链接本文:  
http://jme.biam.ac.cn/CN/      或      http://jme.biam.ac.cn/CN/Y2010/V0/I9/33
[1]余琨,黎文献,王日初,等.Mg-5.6Zn-0.7Zr-0.8Nd合金高温塑性变形的热/力模拟研究[J].金属学报,2003,39:492-498.
[2]FATEMI-VARZANEH S M,ZAREI-HANZAKI A,BELADI H.Dynamic recrystallization in AZ31 magnesium alloy[J].Materials Science and Engineering A,2007,456:52-57.
[3]余琨,史褆,王日初,等.AZ31镁合金变形行为的热/力模拟[J].中南大学学报:自然科学版,2008,39:216-220.
[4]SIVAPRAGASH M,LAKSHMINARAYANAN P R,KARTHI-KEYAN R,et al.Hot deformation behavior of ZE41A magnesium alloy[J].Materials and Design,2008,29:860-866.
[5]WANG Y N,HUANG J C.The role of twinning and untwining in yielding behavior in hot-extraded Mg-Al-Zn alloy[J].Acta Materialia,2007,55(1):897-905.
[6]HIDETOSHI SOMEKAWA,KINJI HIRAI,HIROYUKI,et al.Dislocation creep behavior in Mg-Al-Zn alloy[J].Materials Science and Engineering A,2005,407:53-61.
[7]PALANISWAMY H,NGAILE G,ALTAN T.Finite element simulation of magnesium alloy sheet forming at elevated temperatures[J].Journal of Materials Processing Technology,2004,146:52-60.
[8]苌群峰,李大永,彭颖红.AZ31镁合金板材温热冲压数值模拟与实验研究[J].中国有色金属学报,2006,16:580-585.
[9]CHEN F K,HUANG T B,CHANG C K.Deep drawing of square cups with magnesium alloy AZ31 sheets[J].International Journal of Machine Tools &Manufacture,2003,43:1553-1559.
[10]LIU Juan,CUI Zhen-shan,LI Cong-xin.Analysis of metal workability by integration of FEM and 3-D processing maps[J].Journal of Materials Processing Technology,2008,205:497-505.
[11]ABDEL-WAHAB,EL-MORSY,KEN-ICHI MANABE.Finite element analysis of magnesium AZ31 alloy sheet in warm deep-drawing process considering heat transfer effect[J].Materials Letters,2006,60:1866-1870.
[12]FURUSHIMA T,MANABE K.Experimental and numerical study on deformation behavior in dieless drawing process of superplastic microtubes[J].Journal of Materials Processing Technology,2007,191:59-63.
[13]张鹏,鹿守理,高永生.板带轧制过程温度场有限元模拟及影响因素分析(Ⅱ)[J].北京科技大学学报,1998,20:99-102.
[14]WERTHEIMER T B.Thermal Mechanically Coupled Analysis in Metal Forming Process[M].Swansea:Pineridge Press Ltd,1982.425-434.
[1] 高禹, 刘京, 王进, 王柏臣, 崔旭, 包建文. 真空热循环对碳/双马来酰亚胺复合材料低速冲击性能的影响[J]. 材料工程, 2020, 48(7): 154-161.
[2] 周峰, 王克鲁, 鲁世强, 万鹏, 陈虚怀. Ti-22Al-24Nb-0.5Y合金流变行为及BP神经网络高温本构模型[J]. 材料工程, 2019, 47(8): 141-146.
[3] 周强, 程军, 于振涛, 崔文芳. 一种新型近β型Ti-5.5Mo-6V-7Cr-4Al-2Sn-1Fe合金热变形行为[J]. 材料工程, 2019, 47(6): 121-128.
[4] 任书杰, 罗飞, 田野, 刘大博, 王克鲁, 鲁世强. A100超高强度钢的流变应力曲线修正与唯象本构关系[J]. 材料工程, 2019, 47(6): 144-151.
[5] 李雅芳, 刘皓, 赵义侠. 基于镀银纱线的电加热织物温度场模拟与电热性能[J]. 材料工程, 2019, 47(2): 68-75.
[6] 王宇, 熊柏青, 李志辉, 温凯, 黄树晖, 李锡武, 张永安. 新型超高强Al-Zn-Mg-Cu合金热压缩变形行为及微观组织特征[J]. 材料工程, 2019, 47(2): 99-106.
[7] 张亮, 吴文恒, 卢林, 倪晓晴, 何贝贝, 杨启云, 祝国梁, 顾芸仰. 激光选区熔化热输入参数对Inconel 718合金温度场的影响[J]. 材料工程, 2018, 46(7): 29-35.
[8] 董抒华, 李伟东, 丁妍羽, 贾玉玺, 刘刚, 魏春城. 基于“离位”增韧技术Z向注射RTM成型的浸润研究[J]. 材料工程, 2017, 45(9): 52-58.
[9] 付平, 刘栩, 戴青松, 张佳琪, 邓运来. 5083铝合金热压缩流变应力曲线修正与本构方程[J]. 材料工程, 2017, 45(8): 76-82.
[10] 聂恒昌, 徐吉峰, 关志东, 黎增山, 王鑫. 复合材料胶接修理层合板拉伸性能及影响参数[J]. 材料工程, 2017, 45(10): 124-131.
[11] 袁武华, 龚雪辉, 孙永庆, 梁剑雄. 0Cr16Ni5Mo低碳马氏体不锈钢的热变形行为及其热加工图[J]. 材料工程, 2016, 44(5): 8-14.
[12] 王亚杰, 王波, 张龙, 马宏毅. 玻璃纤维-铝合金正交层板的拉伸性能研究[J]. 材料工程, 2015, 43(9): 60-65.
[13] 王凯, 闫志峰, 王文先, 张红霞, 裴飞飞. 循环载荷作用下镁合金温度演化及高周疲劳性能预测[J]. 材料工程, 2014, 0(1): 85-89.
[14] 于建明, 温彤, 岳远旺, 吴诗仁, 雷帆, 肖冰娥. 基于BP神经网络的AZ31镁合金加工图参数优化[J]. 材料工程, 2013, 0(9): 27-31.
[15] 葛茂忠, 项建云, 张永康. 激光冲击处理对AZ31B镁合金力学性能的影响[J]. 材料工程, 2013, 0(9): 54-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn