Please wait a minute...
 
材料工程  2012, Vol. 0 Issue (12): 7-13    
  论文 本期目录 | 过刊浏览 | 高级检索 |
铝合金7050-T7451高温高应变率本构方程及修正
滑勇之, 关立文, 刘辛军, 崔海龙
清华大学 机械工程学院精密仪器及机械学系,北京 100084
Research and Revise on Constitutive Equation of 7050-T7451 Aluminum Alloy in High Strain Rate and High Temperature Condition
HUA Yong-zhi, GUAN Li-wen, LIU Xin-jun, CUI Hai-long
Department of Precision Instruments and Mechanology,School of Mechanical Engineering,Tsinghua University,Beijing 100084,China
全文: PDF(2036 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 通过分离式霍普金森压杆(SHPB)及准静态压缩实验研究铝合金7050-T7451高温高应变率下流变应力特征,利用准静态实验数据获得本构方程应变强化参数,利用SHPB实验数据获得室温下不同应变率(400~2500s-1)的应变率强化参数,以及应变率为2500s-1不同温度下(250~600℃)的热软化参数。利用不同幂次多项式对Johnson-Cook本构方程的热软化项拟合,最终选择五次多项式作为修正后本构方程热软化项。利用修正后本构方程对不同温度条件下应力-应变曲线进行预测,实验数据与预测曲线表现出良好一致性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
滑勇之
关立文
刘辛军
崔海龙
关键词 铝合金7050本构方程流动应力参数拟合    
Abstract:The flow stress behavior of 7050-T7451 aluminum alloy at high temperature and high strain rate was investigated by split Hopkinson pressure bar (SHPB) and quasi-static test system. The strain hardening parameters were obtained by the quasi-static test experiment data.The strain rate hardening parameter at various strain rates (400-2500s-1) and room temperature,and the thermal softening parameter at various temperatures where strain rate is 2500s-1,were obtained by the split Hopkinson pressure bar experiment data.A new thermal softening equation is proposed to revise the Johnson-Cook constitutive equation ,where the a quintic polynomial equation is choosed as the new thermal softening equation.According to the comparison between predict curves and experiment curves of stress-strain at various temperatures,the modified constitutive equation can fit the experiment date well.
Key wordsaluminum alloy 7050    constitutive equation    flow stress    parameter extraction
收稿日期: 2011-12-30      出版日期: 2012-12-20
中图分类号:  TG115  
基金资助:国家重大专项资助项目(2010ZX04015-011)
作者简介: 滑勇之(1987-),男,硕士研究生,主要研究方向为面向金属切削过程的物理仿真研究,联系地址:北京市海淀区清华大学精仪系9003大楼1502(100084),E-mail:huadiancun@163.com
引用本文:   
滑勇之, 关立文, 刘辛军, 崔海龙. 铝合金7050-T7451高温高应变率本构方程及修正[J]. 材料工程, 2012, 0(12): 7-13.
HUA Yong-zhi, GUAN Li-wen, LIU Xin-jun, CUI Hai-long. Research and Revise on Constitutive Equation of 7050-T7451 Aluminum Alloy in High Strain Rate and High Temperature Condition. Journal of Materials Engineering, 2012, 0(12): 7-13.
链接本文:  
http://jme.biam.ac.cn/CN/      或      http://jme.biam.ac.cn/CN/Y2012/V0/I12/7
[1] 刘世兴.7050铝合金锻件的力学性能和断裂机制研究[J].材料工程,1991,(4):34-37.
[2] KLAMECKI B E. Incipient chip formation in metal cutting a three dimensional finite analysis .Urbana: University of Urana, Champaign,1973.
[3] LAJCZOK M R.A study of some aspects of metal cutting by the finite element method . Raleigh: North Carolina State University,1980.
[4] CARROLL J T, STRENKOWSKI J S. Finite-element models of orthogonal cutting with application to single point diamond turning[J]. International Journal of Mechanical Sciences,1988,30(12):899-920.
[5] LIN Z C, LIN S Y. A coupled finite-element model of thermo-elastic-plastic large deformation for orthogonal cutting[J].Journal of Engineering Materials and Technology-Transactions of the ASME,1992,114(2): 218-226.
[6] GORDON R, JOHNSON, WILLIAM H C. A constitutive model and data for metals subjected to large strains high strain rates and high temperatures.Proceedings of the Seventh International Symposium on Ballistics. Florida,USA: American Defense Preparedness Association,1983.541-547.
[7] JING S C, RICHARD L. The influence of material models on finite element simulation of machining [J].Journal of Manufacturing Science and Engineering,2004,126(4): 849-857.
[8] LIANG R Q, AKHTAR S K.A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures[J].International Journal of Plasticity,1999,(15):963-980.
[9] KOLSKY H. An investigation of the mechanical properties of materials at very high rates of loading[J]. Proc Phys Soc,1949,B62(11):676-700.
[10] 成群林.航空整体结构件切削加工的数值模拟与实验研究.杭州:浙江大学,2006.
[11] 付秀丽,艾兴,万熠,等.铝合金7050高温流变应力特征及本构方程[J].武汉理工大学学报,2006,(12):113-116.
[12] LENNON A M, RAMESH K T. A technique for measuring the dynamic behavior of materials at high temperatures[J]. Int J Plasticity,1998,14(12):1279-1292.
[13] MACDOUGALL D, HARDING J. The measurement of specimen surface temperature in high-speed tension and torsion tests[J]. Int J Impact Engng,1998,21(6):473-488.
[14] SONGWON S, OAKKEY M, HYUNMO Y. Constitutive equation for Ti-6Al-4V at high temperatures measured using the SHPB technique[J]. International Journal of Impact Engineering,2005,(31):735-754.
[15] SHATLA M, ALTAN T. Analytical modeling of drilling and ball end milling[J]. Mater Process Technology,1999,98(1):125-133.
[16] HOU Q Y, WANG J T. A modified Johnson-Cook constitutive model for Mg-Gd-Y alloy extended to a wide range of temperatures[J]. Computational Materials Science,2010,50(1):147-152.
[17] MADALINA C, DOMINIQUE C, FRANCK G. A new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti-6Al-4V [J]. International Journal of Machine Tools & Manufacture,2008,48(3):275-288.
[1] 李慧中, 杨雷, 王岩, 谭钢, 黄钲钦, 刘敏学. 热挤压态Ni-Co-Cr基粉末高温合金热加工行为[J]. 材料工程, 2020, 48(9): 115-123.
[2] 王宇, 熊柏青, 李志辉, 温凯, 黄树晖, 李锡武, 张永安. 新型超高强Al-Zn-Mg-Cu合金热压缩变形行为及微观组织特征[J]. 材料工程, 2019, 47(2): 99-106.
[3] 马琳, 李伟, 白娇娇, 赵丰停. 粉末冶金Ti-14Mo-2.1Ta-0.9Nb-7Zr合金热变形行为[J]. 材料工程, 2018, 46(10): 47-54.
[4] 付平, 刘栩, 戴青松, 张佳琪, 邓运来. 5083铝合金热压缩流变应力曲线修正与本构方程[J]. 材料工程, 2017, 45(8): 76-82.
[5] 杨志强, 刘正东, 何西扣, 刘宁. 反应堆压力容器用SA508Gr.4N钢的热变形行为[J]. 材料工程, 2017, 45(8): 88-95.
[6] 王忠军, 付学丹, 朱晶, 周乐, 王洪斌. ZK60和ZK60-1.0Er镁合金热压缩变形和加工图[J]. 材料工程, 2017, 45(3): 102-111.
[7] 程明阳, 郝世明, 谢敬佩, 王爱琴, 马窦琴, 孙亚丽. SiCP/Al-Cu复合材料的高温热变形行为[J]. 材料工程, 2017, 45(2): 17-23.
[8] 仇琍丽, 高文理, 陆政, 冯朝辉. 7A85铝合金的热压缩流变行为与显微组织[J]. 材料工程, 2016, 44(1): 33-39.
[9] 郑漫庆, 王高潮, 喻淼真, 徐雪峰. 应变速率循环法构建TC4-DT钛合金本构方程[J]. 材料工程, 2014, 0(8): 32-35.
[10] 刘延辉, 姚泽坤, 宁永权, 郭鸿镇. 生物医用TC20钛合金高温变形行为及本构关系[J]. 材料工程, 2014, 0(7): 16-21.
[11] 王进, 褚忠, 张琦. 38MnVS6非调质钢两种高温本构模型的对比[J]. 材料工程, 2014, 0(2): 81-86.
[12] 李卿, 郭鸿镇, 王彦伟, 赵张龙, 姚泽坤. GH4049合金的热变形行为及组织演变[J]. 材料工程, 2014, 0(12): 55-59.
[13] 汪洪峰, 左敦稳, 黄铭敏, 陈明和. 5050铝合金板材高温流变行为研究[J]. 材料工程, 2011, 0(1): 23-27.
[14] 易幼平, 杨积慧, 蔺永诚. 7050铝合金热压缩变形的流变应力本构方程[J]. 材料工程, 2007, 0(4): 20-22,26.
[15] 魏洪亮, 杨晓光, 于慧臣. GH4169合金高温力学行为本构建模及参数识别[J]. 材料工程, 2005, 0(4): 42-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn