Please wait a minute...
材料工程  2012, Vol. 0 Issue (5): 87-92    
  综述 本期目录 | 过刊浏览 | 高级检索 |
尚继武, 张以河, 吕凤柱
中国地质大学( 北京 ) 材料科学与工程学院 矿物岩石材料开发应用国家专业实验室, 北京 100083
Recent Progress of High-dielectric-constant Polymer Composites
SHANG Ji-wu, ZHANG Yi-he, LU Feng-zhu
National Laboratory of Mineral Materials,School of Materials Science and Technology,China University of Geosciences,Beijing 100083,China
全文: PDF(876 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 本文概述了目前高介电聚合物基复合材料的主要问题,论述了铁电陶瓷、导电颗粒(金属粒子、石墨、碳纳米管)改性高介电复合材料的国内外研究进展;重点介绍了酞菁铜、聚苯胺改性全有机高介电复合材料,探讨了存在的主要问题,并指出提高介电常数、储能密度,减小介电损耗,降低制备成本是未来发展的方向。
E-mail Alert
关键词 高介电常数聚合物基复合材料储能电容器介电损耗    
Abstract:The main problems in high-dielectric-constant polymer composites are reviewed. The composites of polymers with ceramics, conductive particles (metal particles, graphite and carbon nanotubes) are summarized. The review also narrates copper phthalocyanine and polyaniline modified all-organic high-K composites. Meanwhile, problems facing the traditional high-K polymer composites are discussed. At last, the prospects of the possible developments in the future are proposed, that is to enhance the dielectric constant, energy density, and to decrease the dielectric loss and production cost.
Key wordshigh dielectric constant    polymer composite    storage capacitor    dielectric loss
收稿日期: 2011-01-07      出版日期: 2012-05-20

教育部科学研究重点项目 (107023);中央高校基本科研业务费专项资金(2011PY0180,2011PY0181)

通讯作者: 张以河(1964-),男,博士,教授,博士生导师,主要研究领域:复合材料、矿物材料、高分子材料、纳米材料,联系地址:北京市海淀区学院路29号中国地质大学材料科学与工程学院 (100083),    
作者简介: 尚继武(1984-),男,硕士研究生,应用化学专业,主要从事高介电复合材料研究,联系地址:北京市海淀区学院路29号中国地质大学材料科学与工程学院S09(100083),
尚继武, 张以河, 吕凤柱. 高介电常数聚合物基复合材料研究进展[J]. 材料工程, 2012, 0(5): 87-92.
SHANG Ji-wu, ZHANG Yi-he, LU Feng-zhu. Recent Progress of High-dielectric-constant Polymer Composites. Journal of Materials Engineering, 2012, 0(5): 87-92.
链接本文:      或
[1]KINGON A I, MARIA J P, STREIFFER S K. Alternative dielectrics to silicon dioxide for memory and logic devices[J]. Nature, 2000, 406(6799): 1032-1038.
[2]LI J J, CLAUDE J, NORENA-FRANCO L E, et al. Electrical energy storage in ferroelectric polymer nanocomposites containing surface-functionalized BaTiO3 nanoparticles[J]. Chemistry of Materials, 2008, 20(20): 6304-6306.
[3]JUNG H M, KANG J H, YANG S Y, et al. Barium titanate nanoparticles with diblock copolymer shielding layers for high-energy density nanocomposites[J]. Chemistry of Materials, 2010, 22(2): 450-456.
[4]ZHANG Y H, KE S M, HUANG H T, et al. Dielectric relaxation in polyimide nanofoamed films with low dielectric constant[J]. Applied Physics Letters, 2008, 92(5):052910-1-052910-3.
[5]ZHANG Y H, SU Q, YU L, et al. Study on the dielectric properties of hybrid and porous polyimide-silica films[J]. Advanced Materials Research, 2008,47-50:973-976.
[6]ZHANG Y H, SU Q, YU L, et al. Preparation and characterization of functional geopolymer[J]. Advanced Materials Research, 2008,47-50:987-990.
[7]ZHANG Q M, BHARTI VIVEK, ZHAO X. Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer[J]. Science, 1998, 280(5372): 2101-2104.
[8]王晔. 高介电常数高分子复合材料研究[D]. 南京:南京航空航天大学, 2003.
[9]CHU B J, ZHOU X, REN K L, et al. A dielectric polymer with high electric energy density and fast discharge speed [J]. Science, 2006, 313(5785): 334-336.
[10]党智敏. 高介电无机/有机复合材料的研究 [D]. 北京:清华大学, 2003.
[11]LI W P, TANG Y W, GUO S S, et al. Reversible phase transition and structure memory effect of metastable phase in electron-irradiated poly(vinylidene-fluoride-trifluoroethyline) copolymers[J]. Applied Physics Letters, 2003, 82(13): 2136-2138.
[12]ARBATTI M, SHAN X B, CHENG Z Y. Ceramic-polymer composites with high dielectric constant[J]. Advanced Materials, 2007, 19(10): 1369-1372.
[13]TOKURA Y, TOMIOKA Y, KUWAHARA H, et al. Origins of colossal magnetoresistance in perovskite-type manganese oxides[J]. Journal of Applied Physics, 1996, 79(8):5288-5291.
[14]CHO S D, LEE J Y, HYUN J G, et al. Study on epoxy/BaTiO3 composite embedded capacitor films (ECFs) for organic substrate applications[J]. Materials Science and Engineering: B, 2004, 110(3): 233-239.
[15]杨晓军, 杨志民, 毛昌辉, 等.高介电常数EP/BT复合材料介电性能的研究 [J]. 化工新型材料, 2006, 34(12): 27-30.
[16]陈章, 马寒冰, 杨宁宁, 等.BaTiO3/环氧高介电常数复合材料[J]. 材料科学与工程学报, 2007, 25(6): 914-916.
[17]陈惠玲, 余萍, 肖定全. 钛酸钡/环氧介电复合材料制备技术的研究 [J]. 功能材料, 2008, 39(3): 367-370.
[18]刘卫东, 刘小芬, 朱宝库, 等. 聚酰亚胺/钛酸钡复合膜介电性能及其影响因素的研究[J]. 功能材料, 2007, 38(7): 1106-1109.
[19]DANG Z M, LIN Y Q, XU H P, et al. Fabrication and dielectric characterization of advanced BaTiO3/polyimide nanocomposite films with high thermal stability[J]. Advanced Functional Materials, 2008, 18(10): 1509-1517.
[20]VREJOIU I, PEDARNIG J D, BUERLE D. Giant dielectric permittivity and electromechanical strain in thin film materials produced by pulsed-laser deposition[J]. Applied Physics Letters, 2003, 83(11): 2130-2132.
[21]YUAN W X, HARK S K, MEI W N. Effective synthesis to fabricate a giant dielectric-constant material CaCu3Ti4O12 via solid state reactions[J]. Journal of Ceramic Processing Research, 2009, 10(5): 696-699.
[22]LOC M, SOPHIE G F, BERNARD D. Grain growth-controlled giant permittivity in soft chemistry CaCu3Ti4O12 ceramics[J]. Journal of the American Ceramic Society, 2008, 91(2): 485-489.
[23]SCHMIDT R, SINCLAIR D C. Anomalous increase of dielectric permittivity in Sr-doped CCTO ceramics Ca1-xSrxCu3Ti4O12 (0≤x≤0.2)[J]. Chemistry of Materials, 2010, 22 (1): 6-8.
[24]DANG Z M, ZHOU T, YAO S H, et al. Advanced calcium copper titanate/polyimide functional hybrid films with high dielectric permittivity[J]. Advanced Materials, 2009, 21(20): 2077-2082.
[25]PECHARROMN C, MOYA J S. Experimental evidence of a giant capacitance in insulator-conductor composites at the percolation threshold[J].Advanced Materials, 2000, 12(4): 294-297.
[26]RAO Y, WONG C P. Ultra high dielectric constant epoxy silver composite for embedded capacitor application[A]. 52nd Electronic Components and Technology Conference[C]. New York, USA: IEEE, 2002. 920-923.
[27]HUANG X Y, JIANG P K, XIE L Y. Ferroelectric polymer/silver nanocomposites with high dielectric constant and high thermal conductivity[J]. Applied Physics Letters, 2009, 95(24): 242901-1-242901-3.
[28]DANG Z M, LIN Y H, NAN C W. Novel ferroelectric polymer composites with high dielectric constants[J]. Advanced Materials, 2003, 15(19): 1625-1629.
[29]LI Y J, XU M, FENG J Q, et al. Dielectric behavior of a metal-polymer composite with low percolation threshold[J]. Applied Physics Letters, 2006, 89(7): 072902-1-072902-3.
[30]CHOI H W, HEO Y W, LEE J H, et al. Effects of Ni particle size on dielectric properties of PMMA-Ni-BaTiO3 composites[J]. Integrated Ferroelectrics, 2007, 87(1): 85-93.
[31]PANDA M, SRINIVAS V, THAKUR A K. On the question of percolation threshold in polyvinylidene fluoride/nanocrystalline nickel composites[J]. Applied Physics Letters, 2008, 92(13): 132905-1-132905-3.
[32]PANDA M, SRINIVAS V, THAKUR A K. Surface and interfacial effect of filler particle on electrical properties of polyvinyledene fluoride/nickel composites[J]. Applied Physics Letters, 2008, 93(24): 242908-1-242908-3.
[33]FAN L, KUMASHIRO Y, WONG C P. Integral capacitor dielectrics based on polymer composites with specialty conductive fillers[A]. 53rd Electronic Components and Technology Conference[C]. New York, USA: IEEE, 2003. 167-172.
[34]QI L, LEE B I, CHEN S H, et al. High-dielectric-constant silver-epoxy composites as embedded dielectrics[J]. Advanced Materials, 2005, 17(14): 1777-1781.
[35]LU J X, MOON K S, XU J W, et al. Synthesis and dielectric properties of novel high-K polymer composites containing in-situ formed silver nanoparticles for embedded capacitor applications[J]. Journal of Materials Chemistry, 2006, 16(16): 1543-1548.
[36]SHEN Y, LIN Y H, LI M, et al. High dielectric performance of polymer composite films induced by a percolating interparticle barrier layer[J]. Advanced Materials, 2007, 19(10): 1418-1422.
[37]SHEN Y, LIN Y H, NAN C W. Interfacial effect on dielectric properties of polymer nanocomposites filled with core/shell-structured particles[J]. Advanced Functional Materials, 2007, 17(14): 2405-2410.
[38]XU J W, WONG C P. Low-loss percolative dielectric composite[J].Applied Physics Letters,2005,87(8):082907-1-082907-3.
[39]张璇, 梁国正, 晁芬, 等. 双马来酰亚胺/BA/石墨介电材料的制备及性能研究[J]. 中国塑料, 2007, 21(8): 42-46.
[40]PANWAR V, MEHRA R M. Analysis of electrical, dielectric, and electromagnetic interference shielding behavior of graphite filled high density polyethylene composites[J]. Polymer Engineering and Science, 2008, 48(11): 2178-2187.
[41]HE F, LAU S, CHAN H L, et al. High dielectric permittivity and low percolation threshold in nanocomposites based on poly(vinylidene fluoride) and exfoliated graphite nanoplates[J]. Advanced Materials, 2009, 21(6): 710-715.
[42]XIE Y C, YU D M, MIN C, et al. Flame-retardant properties of magnesium hydroxystannate and strontium hydroxystannate coated calcium carbonate on soft poly(vinyl chloride)[J]. Journal of Applied Polymer Science, 2009, 112(1): 3613-3619.
[43]WANG L, DANG Z M. Carbon nanotube composites with high dielectric constant at low percolation threshold[J]. Applied Physics Letters, 2005, 87(4): 042903-1-042903-3.
[44]DANG Z M, WANG L, YIN Y, et al. Giant dielectric permittivities in functionalized carbon-nanotube/electroactive-polymer nanocomposites[J]. Advanced Materials, 2007, 19(6): 852-857.
[45]ZHANG S, ZHANG N, HUANG C, et al. Microstructure and electromechanical properties of carbon nanotube/poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) composites[J]. Advanced Materials, 2005, 17(15): 1897-1901.
[46]HAN C F, GU A J, LIANG G Z, et al. Carbon nanotubes/cyanate ester composites with low percolation threshold, high dielectric constant and outstanding thermal property[J]. Composites: Part A, 2010, 41(9): 1321-1328.
[47]YANG C, LIN Y H, NAN C W. Modified carbon nanotube composites with high dielectric constant, low dielectric loss and large energy density[J]. Carbon, 2009, 47(4): 1096-1101.
[48]SUN L L, LI B, ZHAO Y, et al. Structure-induced high dielectric constant and low loss of CNF/PVDF composites with heterogeneous CNF distribution[J]. Nanotechnology, 2010, 21(30): 305702-1-305702-3.
[49]ZHANG Q M, LI H F, POH M, et al. An all-organic composite actuator material with a high dielectric constant[J]. Nature, 2002, 419(6904): 284-287.
[50]XU H S, BAI Y, BHARTI V, et al. High dielectric constant composites based on metallophthalocyanine oligomer and poly(vinylidene fluoride-trifluoroethylene) copolymer[J]. Journal of Applied Polymer Science, 2001, 82(1): 70-75.
[51]HUANG C, ZHANG Q M, DEBOTTON G, et al. All-organic dielectric-percolative three-component composite materials with high electromechanical response[J]. Applied Physics Letters, 2004, 84(22): 4391-4393.
[52]HUANG C, ZHANG Q M. Fully functionalized high-dielectric-constant nanophase polymers with high electromechanical response[J]. Advanced Materials, 2005, 17(9): 1153-1158.
[53]WANG J W,SHEN Q D,YANG C Z,et al.High dielectric constant composite of P(VDF-TrFE) with grafted copper phthalocyanine oligomer[J].Macromolecules,2004,37(6):2294-2298.
[54]WANG J W, WANG Y, WANG F, et al. A large enhancement in dielectric properties of poly(vinylidene fluoride) based all-organic nanocomposite[J]. Polymer, 2009, 50(2): 679-684.
[55]SAHA R, MANDAL B K. New copper phthalocyanine oligomers for high dielectric constant polymer films[J]. Journal of Applied Polymer Science, 2010, 117(1): 122-128.
[56]HUANG C, ZHANG Q M. High-dielectric-constant all-polymer percolative composites[J]. Applied Physics Letters, 2003, 82(20): 3502-3504.
[57]HUANG C, ZHANG Q M. Enhanced dielectric and electromechanical responses in high dielectric constant all-polymer percolative composites[J]. Advanced Functional Materials, 2004, 14(5): 501-506.
[58]WANG C C, SONG J F, BAO H M, et al. Enhancement of electrical properties of ferroelectric polymers by polyaniline nanofibers with controllable conductivities[J]. Advanced Functional Materials, 2008, 18(8): 1299-1306.
[59]YUAN J K, DANG Z M, BAI J B. Unique dielectric properties in polyaniline/poly(vinylidene fluoride) composites induced by temperature variation[J]. Physica Status Solidi (RRL), 2008, 2(5): 233-235
[1] 王云英, 刘杰, 孟江燕, 张建明. 纤维增强聚合物基复合材料老化研究进展[J]. 材料工程, 2011, 0(7): 85-89.
[2] 董其伍, 刘琳琳, 刘敏珊. 预测聚合物基复合材料导热系数方法研究进展[J]. 材料工程, 2009, 0(3): 78-81.
[3] 房晓勇, 曹茂盛, 侯志灵, 张永, 李仲平. SiO2/SiO2复合材料高温介电性能演变规律及温度特性研究[J]. 材料工程, 2007, 0(3): 28-30,41.
[4] 陈金菊, 冯哲圣, 郭洪蕾, 杨邦朝. 铝电解电容器用高介电常数复合氧化膜的制备[J]. 材料工程, 2006, 0(2): 56-60.
[5] 石毓锬, 梁国正, 兰立文. 树脂基复合材料在导弹雷达天线罩中的应用[J]. 材料工程, 2000, 0(5): 36-39.
Full text



版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持