Please wait a minute...
 
材料工程  2012, Vol. 0 Issue (8): 92-100    
  综述 本期目录 | 过刊浏览 | 高级检索 |
INCONEL 718(GH4169)高温合金的发展与工艺
齐欢
上海交通大学密西根学院,上海 200240
Review of INCONEL 718 Alloy: Its History, Properties, Processing and Developing Substitutes
QI Huan
University of Michigan-Shanghai Jiaotong University Joint Institute, Shanghai Jiaotong University,Shanghai 200240,China
全文: PDF(3373 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 INCONEL 718合金(IN718)自从20世纪60年代初在美国的INCO Huntington Alloys(现为Special Metals Co.)被发明并应用于涡轮零部件制造后,已成为航空发动机历史上应用最为广泛的镍基高温合金材料。现代飞机发动机上超过30%(质量分数)的关键零部件由718合金制成。本文回顾了718合金在航空发动机上的应用历史,对该合金的基本力学性能、高温稳定性,以及目前国外应用的铸、锻制造工艺现状做了综述。对国外正在研究的新型IN718衍生替代合金的发展现状进行了介绍。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
齐欢
关键词 INCONEL 718镍基合金718Plus航空发动机    
Abstract:Since its invention and initial application in gas turbine components in the early 60’s of 20th century at INCO Huntington Alloys (now called Special Metals Co.), INCONEL 718 alloy (IN718) has become the most widely used nickel based superalloy in the aircraft engine industry. It was used in many critical aircraft engine components, accounting for over 30% of the total finished component mass of a modern aircraft engine. This article reviews IN718 alloy development history, its mechanical properties, long-term thermal stabilities, industrial processing methods, and current developing substitute alloys for enhanced thermal stability.
Key wordsINCONEL 718    nickel-based superalloy    718Plus    aircraft engine
收稿日期: 2011-07-12      出版日期: 2012-08-20
1:  V252  
作者简介: 齐欢(1974-),男,博士,副教授,从事先进材料激光加工方面研究工作,联系地址:上海市闵行区东川路800号上海交通大学密西根学院208室(200240),E-mail:huan.qi@sjtu.edu.cn
引用本文:   
齐欢. INCONEL 718(GH4169)高温合金的发展与工艺[J]. 材料工程, 2012, 0(8): 92-100.
QI Huan. Review of INCONEL 718 Alloy: Its History, Properties, Processing and Developing Substitutes. Journal of Materials Engineering, 2012, 0(8): 92-100.
链接本文:  
http://jme.biam.ac.cn/CN/      或      http://jme.biam.ac.cn/CN/Y2012/V0/I8/92
[1] SCHAFRIK R,WARD D,GROH J. Application of alloy 718 in GE aircraft engines: past, present and next five years. LORIA E A. Superalloys 718, 625, 706 and Various Derivatives. Warrendale:The Minerals,Metals & Materials Society,2001.1-11.
[2] PAULONIS D,SCHIRRA J. Alloy 718 at pratt & whitney-historical perspective and future challenges. LORIA E A. Superalloys 718, 625, 706 and Various Derivatives. Warrendale:The Minerals,Metals & Materials Society,2001.13-23.
[3] BARKER J F. The initial years of alloy 718. LORIA E. Superalloy 718-Metallurgy and Applications. Warrendale:The Minerals, Metals & Materials Society,1989.269-277.
[4] QI H,AZER M,RITTER A. Studies of standard heat treatment effects on microstructure and mechanical properties of laser net shape manufactured inconel 718[J]. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science,2009,40A(10):2410-2422.
[5] QI H,AZER M,SINGH P. Adaptive toolpath deposition method for laser net shape manufacturing and repair of turbine compressor airfoils[J]. International Journal of Advanced Manufacturing Technology,2010,48(1-4):121-131.
[6] KELBASSA I,KREUTZ E W,ALBUS P, et al. Mechanical properties of the laser cladded alloys Ti-6Al-4V and inconel 718. 24th International Congress on Applications of Lasers and Electro-Optics. Laser Institute of America,2005.660-665.
[7] SCHIRRA J,CALESS R,RB H. The effect of laves phase of the mechanical properties of wrought and cast+hip inconel 718. LORIA E A. Superalloys 718, 625 and Various Derivatives. Warrendale:The Minerals, Metals & Materials Society,1991.
[8] RADHAKRISHNA C,RAO K P. The formation and control of laves phase in superalloy 718 welds[J]. Journal of Materials Science,1997,32(8):1977-1984.
[9] KORTH G,TRYBUS C. Tensile properties and microstructure of alloy 718 thermally aged to 50,000 h. LXIA E A. Superalloys 718,625 and Various Derivatives. Warrendale:The Minerals, Metals & Materials Society,1991.
[10] DIX AW H J, SINGH RP. Application of ultra fine-grain alloy-718 forging billet. Superalloys 1992. Warrendale:The Minerals,Metals & Materials Society,1992.23-32.
[11] GOPIKRISHNA D,JHA S N,DASH L N. Influence of microstructure on fatigue properties of alloy 718. LORIA E A. 4th International Symposium on Superalloys 718, 625, 706 and Derivatives. Warrendale:The Minerals,Metals & Materials Society,1997.567-573.
[12] PIERAGGI B,UGINET J F. Fatigue and creep properties in relation with alloy 718 microstructure. LORIA E A. Superalloys 718, 625, 706 and Various Derivatives. Warrendale:The Minerals, Metals & Materials Society,1994.
[13] KRUEGER D D,STEPHEN D,ANTOLOVICH, et al. Effects of grain size and precipitate size one the fatigue crack growth behavior of alloy 718 at 427℃[J]. Metallurgical Transactions A, 1987,18:1431-1449.
[14] MOYER J,JACKMAN L,ADASCZIK C, et al. Advances in triple melting superalloy-718, superalloy-706, and superalloy-720. Superalloys 718, 625, 706 and Various Derivatives. Warrendale:The Minerals,Metals & Materials Society,1994.39-48.
[15] REED R. The superalloys, fundamentals and applications[M]. Cambridge: Cambridge University Press,2006.217-236.
[16] DAVIS J. Tool materials[M]. Materials Park: ASM International,1995.236-240.
[17] CAO W K R. Role of chemistry in 718-type alloys-allvac® 718PlusTM alloy development. Superalloys 2004. Warrendale:The Minerals,Metals & Materials Society,2004.91-99.
[18] BAYHA T,EVANS D,FURRER D, et al. Metals affordability initiative consortium[J]. Advanced Materials and Processes, 2002,160(5):30-33.
[19] OTT E,GROH J,SIZEK H. Metals affordability initiative: application of allvac alloy 718Plus® for aircraft engine static structural components. Superalloys 718, 625, 706 and Derivatives, Proceedings. Warrendale:The Minerals, Metals & Materials Society,2005.35-45.
[20] HAAFKENS M,MATTHEY J. A new approach to the weldability of nickel-base as-cast and powder metallurgy superalloys[J]. Welding Journal,1982,61(11):25-30.
[21] XIE X,XU C,WANG G, et al. TTT diagram of a newly developed nickel-base superalloy-allvac® 718PlusTM. Superalloys 718, 625, 706 and Derivatives, Proceedings. Warrendale:The Minerals,Metals & Materials Society,2005.193-202.
[22] LIU X,RANGARARAN S,BARBERO E, et al. Fatigue crack propagation behaviors of new developed allvac® 718PlusTM superalloy. GREEN K A. Superalloys 2004. Warrendale:The Minerals,Metals & Materials Society,2004.283-290.
[23] VISHWAKARMA K R,RICHARDS N L,CHATURVEDI M C. HAZ microfissuring in eb welded allvac 718PlusTM alloy. Superalloys 718, 625, 706 and Derivatives. Warrendale:The Minerals,Metals & Materials Society,2005.637-647.
[1] 薛红前, 姜祎君, 封硕. 镍基合金超声疲劳裂纹扩展寿命预测研究[J]. 材料工程, 2014, 0(3): 7-13,20.
[2] 曾莉, 王岩, 李莎, 李阳, 金宪哲. 700℃超超临界锅炉材料GH4700镍基合金组织演变研究[J]. 材料工程, 2013, 0(9): 44-47.
[3] 宋宜四, 高万夫, 王超, 雷晓维, 王华良. 热处理工艺对Inconel718合金组织、力学性能及耐蚀性能的影响[J]. 材料工程, 2012, 0(6): 37-42.
[4] 薛河, 赵丹, 彭群家, 唐伟, 方秀荣, 龚晓燕. 镍基合金材料塑性对应力腐蚀裂纹尖端应力应变场影响的研究[J]. 材料工程, 2011, 0(5): 17-20,25.
[5] 王明罡, 田素贵, 于兴福, 李唐, 夏丹, 雷军. 单晶镍基合金的热处理及对蠕变性能的影响[J]. 材料工程, 2009, 0(3): 56-61.
[6] 刘平, 杨军红. 镍基合金钴元素可见光谱数字化分析技术研究[J]. 材料工程, 2008, 0(11): 46-48.
[7] 余乾, 宋尽霞, 王定刚, 曲士昱, 李青. 返回料比例对镍基高温合金K465组织和性能的影响[J]. 材料工程, 2006, 0(6): 9-12,39.
[8] 刘如铁, 李溪滨, 熊拥军, 赵福安. 二硫化钼添加方式对Ni-Cr基高温自润滑材料性能的影响[J]. 材料工程, 2005, 0(7): 7-10.
[9] 齐红宇, 温卫东, 孙联文. 带孔复合材料层合板疲劳理论研究[J]. 材料工程, 2004, 0(3): 18-20.
[10] 彭志方, 王延庆, 任遥遥, 刘艳, 施雨湘. Ni-Cr-Co合金相含量分布及其对高温拉伸性能的影响[J]. 材料工程, 2002, 0(3): 10-13.
[11] 李志, 曲敬信, 吴仲行, 周平安, 邵荷生. 真空熔结镍基合金涂层的组织结构及其高温磨损特性[J]. 材料工程, 2000, 0(1): 7-12.
[12] 刘金合, 李华伦, 张津生, 谈军. 航空发动机前后冷气导管CO2激光焊研究[J]. 材料工程, 1999, 0(6): 22-23.
[13] 李贺军, 罗瑞盈, 杨峥. 碳/碳复合材料在航空领域的应用研究现状[J]. 材料工程, 1997, 0(8): 8-10.
[14] 黄旭, 曹春晓, 马济民, 王宝, 高扬, 周尧和. 航空发动机钛燃烧及阻燃钛合金[J]. 材料工程, 1997, 0(8): 11-15.
[15] 樊国福, 李惕冰, 林晨, 李婕, 吴锋, 杜光明. 航空特种表面清洗剂在航空发动机长期试车中的应用研究 [J]. 材料工程, 1996, 0(12): 22-24,30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn