Please wait a minute...
 
材料工程  2013, Vol. 0 Issue (3): 16-21,26    DOI: 10.3969/j.issn.1001-4381.2013.03.004
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
N含量对Cr-Mo-V系超低碳贝氏体钢组织性能和析出行为的影响
李晓林, 蔡庆伍, 余伟, 张恒磊
北京科技大学 冶金工程研究院,北京 100083
Effect of Nitrogen Content on Precipitation Behavior, Microstructure and Properties of Cr-Mo-V Ultra-low Carbon Bainitic Steel
LI Xiao-lin, CAI Qing-wu, YU Wei, ZHANG Heng-lei
Engineering Research Institute, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(3551 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 通过光学显微镜(OM)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和能谱仪(EDS)等实验方法,研究了三种不同N含量的超低碳贝氏体钢的显微组织和析出相的成分、尺寸、形貌以及分布等特征。结果表明:低氮含量的钢组织为粒状贝氏体,高氮含量的钢组织为粒状贝氏体+少量的针状铁素体。当实验钢中V/N比为3.4时,通过细晶强化和沉淀强化综合作用,可以使材料的屈服强度和抗拉强度分别增加231MPa和95MPa。与氮含量低的钢相比,高氮含量的钢具有更细小的贝氏体铁素体板条亚结构,且析出相尺寸减小,体积分数增加。基体中存在两种尺寸的纳米级析出相:一种尺寸在10~15nm之间,为V(C,N)析出相,弥散分布在贝氏体板条内部;另一种是含有Cr和V尺寸在10nm以下,具有面心立方结构的(V,Cr)(C,N)复合析出相。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李晓林
蔡庆伍
余伟
张恒磊
关键词 超低碳贝氏体钢沉淀强化力学性能纳米级析出相    
Abstract:The morphology, size, distribution and chemical composition of precipitates and the microstructure of the ultra-low carbon bainitic steel with three different nitrogen contents were investigated by optical microscope (OM), scanning electron microscope(SEM), transmission electron microscope(TEM) and energy disperse spectroscopy (EDS). The results show that the microstructure of the steel with low nitrogen content is granular bainite, while the steel with high nitrogen content is granular bainite as well as some acicular ferrite. When the value of V/N is 3.4, the yield strength and ultimate strength increase by 231MPa and 95MPa, respectively, which is attributed to precipitation strengthening and fine-grain strengthening. Compared with the low nitrogen steel, the high nitrogen steel can obtain finer bainitic ferrite lathes, the number of precipitates increases and the size decreases. There are two kinds of different sizes of the nanometer-sized precipitate particles in matrix, one of these are vanadium carbonitride, which are the range of particle sizes from 10nm to 15nm and distributed within bainitic ferrite lathes. The other precipitates are smaller than 10nm enriched with Cr and V. It seems that this carbide can maintain the NaCl-type of structure.
Key wordsultra-low carbon bainitic steel    precipitation strengthening    mechanical property    nanometer-sized precipitate
收稿日期: 2012-04-20      出版日期: 2013-03-20
中图分类号: 

TG142.1

 
基金资助:

国家自然科学基金项目(51274036)

通讯作者: 蔡庆伍(1955-),男,教授,博士生导师,主要从事钢材的组织性能控制、材料加工新工艺及新技术的研究     E-mail: caiqw@nercar.ustb.edu.cn
作者简介: 李晓林(1985-),男,博士研究生,主要研究方向为新钢种开发以及新工艺研究,联系地址:北京市海淀区学院路30号北京科技大学冶金工程研究院863信箱(100083),Email:lixiaolinwork@163.com
引用本文:   
李晓林, 蔡庆伍, 余伟, 张恒磊. N含量对Cr-Mo-V系超低碳贝氏体钢组织性能和析出行为的影响[J]. 材料工程, 2013, 0(3): 16-21,26.
LI Xiao-lin, CAI Qing-wu, YU Wei, ZHANG Heng-lei. Effect of Nitrogen Content on Precipitation Behavior, Microstructure and Properties of Cr-Mo-V Ultra-low Carbon Bainitic Steel. Journal of Materials Engineering, 2013, 0(3): 16-21,26.
链接本文:  
http://jme.biam.ac.cn/CN/10.3969/j.issn.1001-4381.2013.03.004      或      http://jme.biam.ac.cn/CN/Y2013/V0/I3/16
[1] ZAJAC S. Precipitation of microalloy carbo-nitrides prior, during and after γ/α transformation [J]. Materials Science Forum, 2005, 500-501:75-86.

[2] BAKER T N. Review on proces, microstructure and properties of vanadium microalloyed steels [J]. Materials Science and Technology, 2009, 25(9):1083-1107.

[3] ZAJAC S. Expanded use of vanadium in new generations of high strength steels[A]. Steel Product Metallurgy and Applications[C].NY:Wiley, Materials Science and Technology, 2006.317-326.

[4] LAGNEBORG R, ZAJAC S. A model for interphase precipitation in V-microalloyed structural steels[J]. Metallurgical and Materials Transactions A, 2001, 32(1):39-50.

[5] 张娟,呼努斯图,由国艳.V、N、Nb微合金化对薄板坯连轧带钢组织和性能的影响[J].材料热处理学报, 2007, 28(z1):14-17.ZHANG J, HUNUSITU, YOU G Y. The effect of V,N,Nb microalloying on the microstructure and properties of containing strip rolled from thin slab[J]. Transactions of Materials and Heat Treatment, 2007,28(z1):14-17.

[6] 尹桂全,黄贞益,杨才福,等.氮含量和TMCP对微合金V-N钢显微组织和力学性能的影响[J].金属热处理, 2008,33(3):4-8.YIN G Q,HUANG Z Y,YANG C F,et al. Effects of nitrogen content and TMCP on microstructure and mechanical properties of V-N micro-alloying steels[J]. Heat Treatment of Metals, 2008, 33(3):4-8.

[7] LI Y, WILSON J A, CRAVEN A J, et al. Dispersion strengthening in vanadium microalloyed steels processed by simulated thin slab casting and direct charging part 1: processing parameters, mechanical properties and microstructure[J]. Materials Science and Technology, 2007, 23(5): 509-518.

[8] KIMURA T. Heavy gauge H-shapes with excellent seismic resistance for building structures produced by the third generation TMCP[A]. International Symposium on Steel for Fabricated Structures Conference Proceedings[C].OH, USA:ASM International, Materials Park, 1999.1-4.

[9] 贺信莱,尚成嘉.高性能低碳贝氏体钢-成分、工艺、组织、性能与应用[M].北京:冶金工业出版社,2008.

[10] 杜江,尹桂全,杨才福,等.钒-氮微合金化超低碳贝氏体钢的连续冷却转变特性[J].安徽工业大学学报,2007,24(4):369-373. DU J,YIN G Q,YANG C F,et al.Continuous cooling transformation characteristics of V-N microalloyed ultra-low carbon bainite steels[J]. Journal of ANHUI university of Technology (Natural Science), 2007,24(4):369-373.

[11] YU H, CHEN B H, CHENG X D, et al. Influence of nitrogen on transformation of vanadium microalloyed steels[J]. Advanced Materials Research, 2011, 250-253:75-80.

[12] ZAJAC S, LAGNEBORG R, SIWECKI T. The role of nitrogen in microalloyed steels[A]. Microalloying'95 Conference Proceed-ings[C].Pittsburgh, PA:ISS,1995.321-338.

[13] 武会宾,尚成嘉,杨善武,等.超细化低碳贝氏体钢的回火组织及力学性能[J].金属学报,2004,40(11): 1143-1150. WU H B,SHANG C J,YANG S W,et al.Tempering microstructures and mechanical properties of ultra-fine low carbon bainitic steel[J]. Acta Metallurgical Sinica, 2004,40(11): 1143-1150.

[14] 孙邦明,季怀忠,杨才福,等. V-N微合金化钢筋中钒的析出行为[J].钢铁,2001,36(2) :20-22. SUN B M, JI H Z,YANG C F,et al. Precipitation behavior of vanadium in V-N microalloyed steel[J]. Iron and Steel, 2001,36(2) :20-22.

[15] 齐俊杰,黄运华,张跃.微合金化钢[M].北京:冶金工业出版社,2006.

[16] 雍岐龙.钢铁材料中的第二相[M].北京:冶金工业出版社, 2006.

[17] 江浩,吴晓春.新型含氮奥氏体热作模具钢的研究[J].材料热处理学报,2011,32(3):67-72. JIANG H, WU X C. Research on a new nitrogen-bearing austenitic hot work die steel[J]. Transactions of Materials and Heat Treatment, 2011,32(3):67-72.

[18] OROWAN E. Symposium on Internal Stresses in Metals and Alloys[M]. London: Institute of Metals,1948.

[19] 殷凤仕.纳米析出相强化9Cr铁素体/马氏体耐热钢[A]. 中国工程院化工·冶金与材料工程学部第六届学术会议论文集[C]. 北京:化学工业出版社,2007.869-873.

[20] HU X B,LI L, WU X C, et al. Coarsening behavior of M23C6 carbides after ageing or thermal fatigue in AISI H13 steel with niobium[J]. International Journal of Fatigue, 2006, 28(3):175-182.

[21] 薛松,周杰,张艳伟,等. H13钢退火态中的碳化物分析[J].材料热处理学报, 2012, 33(2):100-105. XUE S,ZHOU J, ZHANG Y W, et al. Analysis of carbides in spheroidized H13 steel[J]. Transactions of Materials and Heat Treatment, 2012, 33(2):100-105.

[22] 郑明新.工程材料[M].北京:清华大学出版社, 1997.

[23] SHEN Y Z, KIM S H, HAN C H, et al, Vanadium nitride precipitate phase in a 9% chromium steel for nuclear power plant applications[J]. Journal of Nuclear Materials,2008, 374:403-412.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[3] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[4] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[5] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[6] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[7] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[8] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[9] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[10] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[11] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[12] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[13] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[14] 刘天豪, 郭胜锋. 铁基块体非晶合金的形成规律与力学性能研究进展[J]. 材料工程, 2020, 48(11): 46-57.
[15] 唐鹏钧, 房立家, 杨斌, 陈冰清, 李沛勇, 张学军. 激光选区熔化AlSi7MgTi合金显微组织与性能[J]. 材料工程, 2020, 48(11): 116-123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn