Abstract:The morphology, size, distribution and chemical composition of precipitates and the microstructure of the ultra-low carbon bainitic steel with three different nitrogen contents were investigated by optical microscope (OM), scanning electron microscope(SEM), transmission electron microscope(TEM) and energy disperse spectroscopy (EDS). The results show that the microstructure of the steel with low nitrogen content is granular bainite, while the steel with high nitrogen content is granular bainite as well as some acicular ferrite. When the value of V/N is 3.4, the yield strength and ultimate strength increase by 231MPa and 95MPa, respectively, which is attributed to precipitation strengthening and fine-grain strengthening. Compared with the low nitrogen steel, the high nitrogen steel can obtain finer bainitic ferrite lathes, the number of precipitates increases and the size decreases. There are two kinds of different sizes of the nanometer-sized precipitate particles in matrix, one of these are vanadium carbonitride, which are the range of particle sizes from 10nm to 15nm and distributed within bainitic ferrite lathes. The other precipitates are smaller than 10nm enriched with Cr and V. It seems that this carbide can maintain the NaCl-type of structure.
[1] ZAJAC S. Precipitation of microalloy carbo-nitrides prior, during and after γ/α transformation [J]. Materials Science Forum, 2005, 500-501:75-86. [2] BAKER T N. Review on proces, microstructure and properties of vanadium microalloyed steels [J]. Materials Science and Technology, 2009, 25(9):1083-1107.[3] ZAJAC S. Expanded use of vanadium in new generations of high strength steels[A]. Steel Product Metallurgy and Applications[C].NY:Wiley, Materials Science and Technology, 2006.317-326.[4] LAGNEBORG R, ZAJAC S. A model for interphase precipitation in V-microalloyed structural steels[J]. Metallurgical and Materials Transactions A, 2001, 32(1):39-50.[5] 张娟,呼努斯图,由国艳.V、N、Nb微合金化对薄板坯连轧带钢组织和性能的影响[J].材料热处理学报, 2007, 28(z1):14-17.ZHANG J, HUNUSITU, YOU G Y. The effect of V,N,Nb microalloying on the microstructure and properties of containing strip rolled from thin slab[J]. Transactions of Materials and Heat Treatment, 2007,28(z1):14-17.[6] 尹桂全,黄贞益,杨才福,等.氮含量和TMCP对微合金V-N钢显微组织和力学性能的影响[J].金属热处理, 2008,33(3):4-8.YIN G Q,HUANG Z Y,YANG C F,et al. Effects of nitrogen content and TMCP on microstructure and mechanical properties of V-N micro-alloying steels[J]. Heat Treatment of Metals, 2008, 33(3):4-8.[7] LI Y, WILSON J A, CRAVEN A J, et al. Dispersion strengthening in vanadium microalloyed steels processed by simulated thin slab casting and direct charging part 1: processing parameters, mechanical properties and microstructure[J]. Materials Science and Technology, 2007, 23(5): 509-518.[8] KIMURA T. Heavy gauge H-shapes with excellent seismic resistance for building structures produced by the third generation TMCP[A]. International Symposium on Steel for Fabricated Structures Conference Proceedings[C].OH, USA:ASM International, Materials Park, 1999.1-4.[9] 贺信莱,尚成嘉.高性能低碳贝氏体钢-成分、工艺、组织、性能与应用[M].北京:冶金工业出版社,2008.[10] 杜江,尹桂全,杨才福,等.钒-氮微合金化超低碳贝氏体钢的连续冷却转变特性[J].安徽工业大学学报,2007,24(4):369-373. DU J,YIN G Q,YANG C F,et al.Continuous cooling transformation characteristics of V-N microalloyed ultra-low carbon bainite steels[J]. Journal of ANHUI university of Technology (Natural Science), 2007,24(4):369-373.[11] YU H, CHEN B H, CHENG X D, et al. Influence of nitrogen on transformation of vanadium microalloyed steels[J]. Advanced Materials Research, 2011, 250-253:75-80.[12] ZAJAC S, LAGNEBORG R, SIWECKI T. The role of nitrogen in microalloyed steels[A]. Microalloying'95 Conference Proceed-ings[C].Pittsburgh, PA:ISS,1995.321-338.[13] 武会宾,尚成嘉,杨善武,等.超细化低碳贝氏体钢的回火组织及力学性能[J].金属学报,2004,40(11): 1143-1150. WU H B,SHANG C J,YANG S W,et al.Tempering microstructures and mechanical properties of ultra-fine low carbon bainitic steel[J]. Acta Metallurgical Sinica, 2004,40(11): 1143-1150.[14] 孙邦明,季怀忠,杨才福,等. V-N微合金化钢筋中钒的析出行为[J].钢铁,2001,36(2) :20-22. SUN B M, JI H Z,YANG C F,et al. Precipitation behavior of vanadium in V-N microalloyed steel[J]. Iron and Steel, 2001,36(2) :20-22.[15] 齐俊杰,黄运华,张跃.微合金化钢[M].北京:冶金工业出版社,2006.[16] 雍岐龙.钢铁材料中的第二相[M].北京:冶金工业出版社, 2006.[17] 江浩,吴晓春.新型含氮奥氏体热作模具钢的研究[J].材料热处理学报,2011,32(3):67-72. JIANG H, WU X C. Research on a new nitrogen-bearing austenitic hot work die steel[J]. Transactions of Materials and Heat Treatment, 2011,32(3):67-72.[18] OROWAN E. Symposium on Internal Stresses in Metals and Alloys[M]. London: Institute of Metals,1948.[19] 殷凤仕.纳米析出相强化9Cr铁素体/马氏体耐热钢[A]. 中国工程院化工·冶金与材料工程学部第六届学术会议论文集[C]. 北京:化学工业出版社,2007.869-873.[20] HU X B,LI L, WU X C, et al. Coarsening behavior of M23C6 carbides after ageing or thermal fatigue in AISI H13 steel with niobium[J]. International Journal of Fatigue, 2006, 28(3):175-182.[21] 薛松,周杰,张艳伟,等. H13钢退火态中的碳化物分析[J].材料热处理学报, 2012, 33(2):100-105. XUE S,ZHOU J, ZHANG Y W, et al. Analysis of carbides in spheroidized H13 steel[J]. Transactions of Materials and Heat Treatment, 2012, 33(2):100-105.[22] 郑明新.工程材料[M].北京:清华大学出版社, 1997.[23] SHEN Y Z, KIM S H, HAN C H, et al, Vanadium nitride precipitate phase in a 9% chromium steel for nuclear power plant applications[J]. Journal of Nuclear Materials,2008, 374:403-412.