Please wait a minute...
 
2222材料工程  2016, Vol. 44 Issue (9): 115-120    DOI: 10.11868/j.issn.1001-4381.2016.09.018
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
热处理非晶态Ni-P合金镀层的晶化过程
金世伟1, 康敏1,2,*(), 邵越1, 杜晓霞1, 张欣颖1
1 南京农业大学 工学院, 南京 210031
2 南京农业大学 江苏省智能化农业装备重点实验室, 南京 210031
Crystallization Process of Heat-treated Amorphous Ni-P Alloy Coating
Shi-wei JIN1, Min KANG1,2,*(), Yue SHAO1, Xiao-xia DU1, Xin-ying ZHANG1
1 College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
2 Key Laboratory of Intelligent Agricultural Equipment in Jiangsu Province, Nanjing Agricultural University, Nanjing 210031, China
全文: PDF(4938 KB)   HTML ( 16 )  
输出: BibTeX | EndNote (RIS)      
摘要 

运用电沉积的方法在45钢基体上制备Ni-P合金镀层,使用差示扫描量热法(DSC)和热重法(TG)分析非晶态Ni-P合金镀层在20℃/min加热速率下的热效应和质量变化。在300℃和400℃分别对镀层进行0,15,30,45,60,75min的热处理,采用扫描电镜(SEM)、能谱仪(EDS)、X射线衍射仪(XRD)、显微硬度计对镀层进行表征。结果表明:Ni-P合金镀层在加热过程中的放热峰出现在284.8℃处,镀层的质量和元素组成稳定;晶化过程经历了非晶态、亚稳态NiP和Ni5P2、稳定态Ni3P的转变;经过热处理后,镀层的显微硬度显著提高,最大值达1036.56HV,约为镀态的2倍;热处理态镀层的耐NaCl溶液腐蚀性能比镀态有所下降,但两者都比45钢基体好。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
金世伟
康敏
邵越
杜晓霞
张欣颖
关键词 Ni-P合金镀层电沉积晶化显微硬度    
Abstract

Amorphous Ni-P alloy coatings were prepared on 45 carbon steel blocks using electrodeposition method. The thermal effect and quality change of Ni-P alloy coating under heating rate of 20℃/min were analyzed by differential scanning calorimetry (DSC) and thermogravimetry (TG). Coatings were heat-treated at 300℃ and 400℃ for 0, 15, 30, 45, 60, 75min respectively, coating surface was characterized by scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD), microhardness tester. The result shows that the exothermic peak of Ni-P alloy coating appears at 284.8℃, coating quality and elemental composition are stable during the heat treatment. Crystallization process experiences a transformation of amorphous, metastable state NiP and Ni5P2, stable state Ni3P. The microhardness of coating can be improved remarkably after heat treatment, namely, the maximum value of heat-treated coating is 1036.56HV, which is nearly 2 times as hard as as-deposited coating. The corrosion resistance of heat-treated Ni-P alloy coating in NaCl solution is inferior to as-deposited coating, but they are both much better than 45 carbon steel substrate.

Key wordsNi-P alloy coating    electrodeposition    crystallization    microhardness
收稿日期: 2014-10-15      出版日期: 2016-09-27
中图分类号:  TG166.7  
  TG174.44  
基金资助:2014年度苏北科技专项资金项目(BN2014019);国家大学生创新创业训练计划项目(201410307079);江苏省普通高校研究生实践创新计划项目(SJLX_0250)
通讯作者: 康敏     E-mail: kangmin@njau.edu.cn
作者简介: 康敏(1965-), 男, 博士, 教授, 主要从事特种加工、表面改性等方面的研究, 联系地址:江苏省南京市浦口区点将台路40号南京农业大学工学院机械工程系(210031), E-mail:kangmin@njau.edu.cn
引用本文:   
金世伟, 康敏, 邵越, 杜晓霞, 张欣颖. 热处理非晶态Ni-P合金镀层的晶化过程[J]. 材料工程, 2016, 44(9): 115-120.
Shi-wei JIN, Min KANG, Yue SHAO, Xiao-xia DU, Xin-ying ZHANG. Crystallization Process of Heat-treated Amorphous Ni-P Alloy Coating. Journal of Materials Engineering, 2016, 44(9): 115-120.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.09.018      或      http://jme.biam.ac.cn/CN/Y2016/V44/I9/115
Fig.1  Ni-P合金镀层的DTA曲线
Fig.2  Ni-P合金镀层的表面形貌
(a)镀态;(b)热处理态
Fig.3  Ni-P合金镀层表面能谱图
(a)镀态;(b)热处理态
Fig.4  两种温度下热处理不同时间Ni-P合金镀层的X射线衍射花样
(a)300℃;(b)400℃
Fig.5  不同热处理条件下镀层的显微硬度值
Fig.6  经过热处理后镀层和基体的压痕
Fig.7  经NaCl溶液腐蚀后镀层和基体的表面形貌
(a)镀态;(b)热处理态;(c)45钢基体
1 胡振峰, 吕镖, 汪笑鹤, 等. 相对运动速度对电刷镀镍镀层组织结构和性能的影响[J]. 材料工程, 2014, (5): 12- 16.
1 HU Z F , LYU B , WANG X H , et al. Effect of relative moving speed on microstructure and properties of brush electroplating nickel[J]. Journal of Materials Engineering, 2014, (5): 12- 16.
2 郭瑞, 梁波, 赵晓兵, 等. 等离子喷涂Al2O3涂层的电击穿机理[J]. 航空材料学报, 2014, 34 (5): 43- 48.
2 GUO R , LIANG B , ZHAO X B , et al. Electrical insulating properties of plasma sprayed Al2O3 coating[J]. Journal of Aeronautical Materials, 2014, 34 (5): 43- 48.
3 李静, 张金栋, 张玉忠, 等. 耐高温抗激光烧蚀涂层研制与性能表征[J]. 航空材料学报, 2014, 34 (1): 34- 38.
3 LI J , ZHANG J D , ZHANG Y Z , et al. Development and characterization of high-temperature and laser ablation resistant coating[J]. Journal of Aeronautical Materials, 2014, 34 (1): 34- 38.
4 LEE H B , WUU D S , LEE C Y , et al. Study of the corrosion behavior of nanocrystalline Ni-P electrodeposited coating[J]. Metallurgical and Materials Transactions A, 2010, 41 (2): 450- 459.
doi: 10.1007/s11661-009-0101-1
5 YONEZU A , NIWA M , YE J P , et al. Contact fracture mechanism of electroplated Ni-P coating upon stainless steel substrate[J]. Materials Science and Engineering:A, 2013, 563, 184- 192.
doi: 10.1016/j.msea.2012.11.054
6 WANG Y , KANG M , JIN S W , et al. Electrochemical behaviour in process of electrodeposition Ni-P alloy coating[J]. Surface Engineering, 2014, 30 (8): 557- 561.
doi: 10.1179/1743294414Y.0000000291
7 KEONG K G , SHA W , MALINOV S . Hardness evolution of electroless nickel-phosphorus deposits with thermal processing[J]. Surface and Coatings Technology, 2003, 168 (2-3): 263- 274.
doi: 10.1016/S0257-8972(03)00209-3
8 LI Z M , QIAN S Q , WANG W , et al. High-temperature tribological properties of Ni-P alloy coatings deposited by electro-brush plating[J]. Rare Metals, 2011, 30 (6): 669- 675.
doi: 10.1007/s12598-011-0447-6
9 付贵忠, 张垒, 王文昌, 等. 热处理温度对化学镀Ni-P镀层组织和磨损性能的影响[J]. 四川大学学报(工程科学版), 2013, 45 (增刊1): 149- 153.
9 FU G Z , ZHANG L , WANG W C , et al. Effects of heat treatment temperatures on the structures and wear performance of Ni-P coating by chemical plating[J]. Journal of Sichuan University (Engineering Science Edition), 2013, 45 (Suppl 1): 149- 153.
10 王玉, 郭金彪, 俞宏英, 等. 电沉积非晶态镍磷镀层的结构及晶化过程[J]. 材料热处理学报, 2009, 30 (1): 145- 148.
10 WANG Y , GUO J B , YU H Y , et al. Microstructure and crystallization process of electrodeposited amorphous Ni-P coatings[J]. Transactions of Materials and Heat Treatment, 2009, 30 (1): 145- 148.
11 金世伟, 康敏, 王颖, 等. 电沉积时间对Ni-P合金镀层性能的影响[J]. 有色金属工程, 2014, 4 (3): 27- 29.
11 JIN S W , KANG M , WANG Y , et al. Effect of electroplate time on properties of Ni-P alloy coating[J]. Nonferrous Metals Engineering, 2014, 4 (3): 27- 29.
12 ZANGENEH M K , MONIR S M . The effect of thermochemical treatment on the structure and hardness of electroless Ni-P coated low alloy steel[J]. Surface and Coatings Technology, 2004, 182 (1): 65- 71.
doi: 10.1016/S0257-8972(03)00810-7
13 LI L C , ZHANG Y , DENG S , et al. Effect of ammonium on low-temperature electrodeposition of Ni-P alloys[J]. Materials Letters, 2003, 57 (22-23): 3444- 3448.
doi: 10.1016/S0167-577X(03)00097-1
14 魏寿昆. 冶金过程热力学[M]. 北京: 科学出版社, 2010: 304- 311.
14 WEI S K . Metallurgical Thermodynamics[M]. Beijing: Science Press, 2010: 304- 311.
15 ZOIKIS K A , PAVLATOU E A , SPYRELLIS N . Pulse electrodeposition of Ni-P matrix composite coatings reinforced by SiC particles[J]. Journal of Alloys and Compounds, 2010, 494 (1-2): 396- 403.
doi: 10.1016/j.jallcom.2010.01.057
16 刘宏, 郭荣新, 宗云, 等. 化学沉积Ni-P/Ni-W-P合金的热处理晶化及磨损行为[J]. 材料热处理学报, 2011, 32 (2): 139- 145.
16 LIU H , GUO R X , ZONG Y , et al. Annealing crystallization and wear behavior of electroless deposited Ni-P and Ni-W-P coatings[J]. Transactions of Materials and Heat Treatment, 2011, 32 (2): 139- 145.
17 WU B , XU B S , ZHANG B , et al. The effects of parameters on the mechanical properties of Ni-based coatings prepared by automatic brush plating technology[J]. Surface and Coatings Technology, 2007, 201 (12): 5758- 5765.
doi: 10.1016/j.surfcoat.2006.10.013
18 洪波, 姜传海, 王新建, 等. Ni-P非晶薄膜晶化相与相变动力学的XRD分析[J]. 金属学报, 2006, 42 (7): 699- 702.
18 HONG B , JIANG C H , WANG X J , et al. XRD analysis of phase transformation and kinetics of Ni-P amorphous film[J]. Acta Metallurgica Sinica, 2006, 42 (7): 699- 702.
[1] 汤洋. 电沉积ZnO纳米柱的光学带隙与非辐射复合[J]. 材料工程, 2022, 50(3): 90-97.
[2] 余晖, 任军超, 杨鑫, 郭舒龙, 余炜, 冯建航, 殷福星, 辛光善. Zn层添加AZ31/7075合金复合成形工艺及组织与性能研究[J]. 材料工程, 2022, 50(3): 157-165.
[3] 吕彦龙, 贺建超, 侯金保, 张博贤. 热处理对TiAl/Ti2AlNb放电等离子扩散焊接头微观组织与力学性能的影响[J]. 材料工程, 2021, 49(9): 87-93.
[4] 韩锡正, 费敬银, 赵利娜, 燕宝强, 王俊. 完全非晶态Ni-B合金镀层的电沉积制备[J]. 材料工程, 2021, 49(5): 171-177.
[5] 曲丽丹, 韩斌慧, 吕云卓, 白钰枝. 激光3D打印非晶合金晶化体积分数的理论预测[J]. 材料工程, 2020, 48(7): 133-138.
[6] 赵强, 祝文卉, 邵天巍, 帅焱林, 刘佳涛, 王冉, 张利, 梁晓波. Ti-22Al-25Nb合金惯性摩擦焊接头显微组织与力学性能[J]. 材料工程, 2020, 48(6): 140-147.
[7] 郭琪琪, 费敬银, 张嫚, 韩锡正, 赵利娜. Fei氏方波对Ni-P合金镀层组成及其非晶化程度的调控作用[J]. 材料工程, 2020, 48(6): 163-169.
[8] 刘成, 彭志方, 彭芳芳, 陈方玉, 刘省. P92钢625℃持久实验过程中试件特征部位相参量的变化[J]. 材料工程, 2020, 48(3): 98-104.
[9] 陈林, 陈文静, 黄强, 熊中. 超声振动对EA4T钢激光熔覆质量和性能的影响[J]. 材料工程, 2019, 47(5): 79-85.
[10] 钟蛟, 彭志方, 陈方玉, 彭芳芳, 刘省, 石振斌. P92钢奥氏体化后的冷却方式对650℃时效组织及硬度稳定性的影响[J]. 材料工程, 2019, 47(1): 119-124.
[11] 章媛洁, 张金良, 张磊, 李宁, 宋波, 史玉升. 3D打印非晶合金材料工艺及性能的研究进展[J]. 材料工程, 2018, 46(7): 12-18.
[12] 山圣峰, 田晓生, 于涛, 贾元智, 马明臻. Y添加Ti40Zr25Cu9Ni8Be18非晶合金的纳米晶化及力学性能[J]. 材料工程, 2018, 46(7): 88-93.
[13] 郑欢欢, 刘鑫禹, 陈亚楠, 张从林, 吕鹏, 蔡杰, 关庆丰. 20钢强流脉冲电子束表面合金化的微观组织和性能[J]. 材料工程, 2018, 46(7): 127-135.
[14] 龚玉兵, 王善林, 李宏祥, 柯黎明, 陈玉华, 马彬. 脉冲宽度对激光熔覆FeSiB涂层组织与硬度的影响[J]. 材料工程, 2018, 46(3): 74-80.
[15] 彭秋艳, 费敬银, 陈居田, 赵非凡, 冯旭. 双向脉冲快速电沉积非晶态Ni-P/Al2O3复合镀层[J]. 材料工程, 2018, 46(3): 81-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn