Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (1): 1-6    DOI: 10.11868/j.issn.1001-4381.2015.000125
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
自蔓延高温合成/单向加压法制备ZrC陶瓷研究
程勇1, 苏勋家1, 侯根良1, 史子良1, 钟长荣1, 邢亚坤2
1. 火箭军工程大学, 西安 710025;
2. 重庆通信学院, 重庆 400035
ZrC Ceramics Prepared by Self-propagating High-temperature Synthesis/Single Action Pressing
CHENG Yong1, SU Xun-jia1, HOU Gen-liang1, SHI Zi-liang1, ZHONG Chang-rong1, XING Ya-kun2
1. Rocket Force University of Engineering, Xi'an 710025, China;
2. Chong Qing Communication Constitution, Chongqing 400035, China
全文: PDF(973 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用自蔓延高温合成/单向加压法(SHS/SAP)在机械轴压下制备ZrC陶瓷。研究压力大小对ZrC陶瓷显微结构与致密度的影响以及位移、负荷曲线的变化规律与SHS反应过程之间的关系。利用XRD与SEM研究产物的物相组成和显微结构,采用排液法测定产物的密度,通过万能试验机平台记录位移、负荷曲线。结果表明:产物基体主要由ZrC相组成。压力的增大加速了排气过程。产物内部的孔洞及ZrC晶粒的尺寸呈变小趋势,致密度呈增大的趋势,而压力为80MPa后致密度增大趋势变化不大,由于在SHS反应结束后的最高温度时压力下降较剧烈,在压力为120MPa时产物的致密度也仅为65.7%。位移、负荷曲线反映了SHS反应结束的时间点及之后产物所处的塑性时间段,这为引入自蔓延高温合成/准热等静压法进一步提高陶瓷致密度的工艺参数提供了依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
程勇
苏勋家
侯根良
史子良
钟长荣
邢亚坤
关键词 SHS/SAPZrC陶瓷压力    
Abstract:ZrC ceramics were prepared by mechanical axial compression of self-propagating high-temperature synthesis/single action pressing (SHS/SAP).The effects of pressure on microstructure and densification of the products,as well as the relationship between displacement/variation of the load curve and SHS reaction,were studied.The structure and properties of the products were investigated by XRD and SEM.In addition,the density was measured by the drain away liquid method.Meanwhile,universal testing machine was used to record the displacement and load curve alternations.The results indicate that products are mainly composed of ZrC phase,the process of exhaust are accelerated as the increasing of pressure as well,leading to the smaller size of porosity and crystal particles.Density manifested as an increasing pattern by the elevated pressure with no longer change at 80MPa.Due to the strong attenuation of pressure at the peak of temperature,the density of the production is only 65.7% in 120MPa.The end point of the SHS reaction and the plastic time of the products can be monitored by displacement and load curve.The results provide evidence for the application of self-propagating high-temperature synthesis/pseudo-hot isostatic pressing to further improve the density of ceramics.
Key wordsSHS/SAP    ZrC    ceramic    pressure
收稿日期: 2015-01-26      出版日期: 2017-01-19
中图分类号:  TB35  
通讯作者: 苏勋家(1965-),男,教授,博士生导师,研究方向:兵器科学与技术,联系地址:陕西省西安市灞桥区洪庆镇同心路2号火箭军工程大学501教研室(710025),E-mail:suxunjia@163.com     E-mail: suxunjia@163.com
引用本文:   
程勇, 苏勋家, 侯根良, 史子良, 钟长荣, 邢亚坤. 自蔓延高温合成/单向加压法制备ZrC陶瓷研究[J]. 材料工程, 2017, 45(1): 1-6.
CHENG Yong, SU Xun-jia, HOU Gen-liang, SHI Zi-liang, ZHONG Chang-rong, XING Ya-kun. ZrC Ceramics Prepared by Self-propagating High-temperature Synthesis/Single Action Pressing. Journal of Materials Engineering, 2017, 45(1): 1-6.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.000125      或      http://jme.biam.ac.cn/CN/Y2017/V45/I1/1
[1] ZHANG X,HILMAS G E,FAHRENHOLTS W G,et al.Hot pressing of tantalum carbide with and without sintering additives[J].J Am Ceram Soc,2007,90(2):393-401.
[2] LIU J X,KAN Y M,ZHANG G J.Synthesis of ultra-fine hafnium carbide powder and its pressureless sintering[J].J Am Ceram Soc,2010,93(4):980-986.
[3] 李秀倩,焦健,邱海鹏,等.ZrC/SiC多组元改性C/C复合材料的制备及性能研究[J].航空材料学报,2014,34(3):69-73. LI X Q,JIAO J,QIU H P,et al.Preparation and performance of ZrC/SiC multi-components modified C/C composites[J].Journal of Aeronautical Materials,2014,34(3):69-73.
[4] MA B X,HAN W B.Thermal shock resistance of ZrC matrix ceramics[J].J Refract Met Hard Mat,2010,28(2):187-190.
[5] 张响,陈招科,熊翔.C/C-SiC复合材料表面ZrB2基陶瓷涂层的制备及高温烧结机理[J].材料工程,2015,43(3):1-6. ZHANG X,CHEN Z K,XIONG X.Preparation and high-temperature sintering mechanism of ZrB2 ceramic composite coatings for C/C-SiC composites[J].Journal of Materials Engineering,2015,43(3):1-6.
[6] ZHAO L Y,JIA D C,WANG Y J,et al.ZrC-ZrB2 matrix composites with enhanced toughness prepared by reactive hot pressing[J].Set Mater,2010,63(8):887-890.
[7] WANG X G,GUO W M,KAN Y M,et al.Densification behavior and properties of hot-pressed ZrC ceramics with Zr and graphite additives[J].J Eur Ceram Soc,2011,31(6):1103-1111.
[8] NOBUHIRO S.Simultaneous synthesis and forming of Ti-B system by self-propagating reaction[J].The Ceramic Society of Japan,1987,95(2):243-247.
[9] YANAGISAWA N,SATA N,SANADA N.Fabrication of TiB2-Cu functionally gradient material by SHS process[C]//YAMANOUCHI M.Proc 1st US-Japanese Workshop on Combustion Synthesis.Tokyo:National Research Institute for Metals,1990.
[10] ZAVITSANOS P.The use of self-propagating high-temperature synthesis of high-density titanium diboride[C]//MUNIR Z A.Combustion and Plasma Synthesis of High-temperature Materials.New York:VCH Publisher,1990.
[11] 殷声.燃烧合成[M].北京:冶金工业出版社,1999. YIN S.Combustion Synthesis[M].Beijing:Metallurgical Industry Press,1999.
[12] 宋谋胜.燃烧合成TiC、ZrC晶体的形成过程与生长动力学研究[D].上海:上海交通大学,2009. SONG M S.Investigation of the formation process and growth kinetics of combustion synthesized TiC and ZrC crystals[D].Shanghai:Shanghai Jiao Tong University,2009.
[13] MERZHANOV A G.Self-propagating high-temperature synthesis:twenty years of search and findings[C]//MUNIR Z A.Combustion and Plasma Synthesis of High-temperature Materials.New York:VCH Publisher,1990.
[14] 傅正义,袁润章,MUNIR Z A.原料粒度及组成对TiB2-xAl复合体系的SHS合成过程影响[J].复合材料学报,1994,11(2):91. FU Z Y,YUAN R Z,MUNIR Z A.Effect of composition and raw materials particle size on SHS of TiB2-xAl composite system[J].Acta Materiae Compositae Sinica,1994,11(2):91.
[15] 傅正义,王为民,王皓.TiB2系金属陶瓷的SHS/QP制备[J].硅酸盐学报,1996,24(6):657-658. FU Z Y,WANG W M,WANG H.TiB2-xFe cermet prepared by SHS/QP[J].Journal of the Chinese Ceramic Society,1996,24(6):657-658.
[16] 李翀.Ti3AlC2陶瓷材料的SHS/PHIP制备工艺及其性能与应用研究[D].哈尔滨:哈尔滨工业大学,2007. LI C.Study on SHS/PHIP prepared technology and the properties and applications of Ti3A1C2 ceramics material[D].Harbin:Harbin Institute of Technology,2007.
[17] 朱春城,林红,李翀,等.TiC-TiB2/Cu金属陶瓷燃烧合成及工艺参数的正交优化[J].黑龙江大学自然科学学报,2007,24(3):331-335. ZHU C C,LIN H,LI C,et al.Orthogonal optimization of process parameter during TiC-TiB2/Cu cermets combustion synthesis[J] Journal of Natural Science of Heilongjiang University,2007,24(3):331-335.
[18] 汪建利,张光胜,朱云广,等.燃烧合成Cf/TiC-TiB2陶瓷基复合材料的致密化因素探讨[J].粉末冶金技术,2008,26(1):33-36. WANG J L,ZHANG G S,ZHU Y G,et.al.Densification factors of Cf/TiC-TiB2 ceramic composites by combustion synthesis[J].Powder Metallurgy Technology,2008,26(1):33-36.
[1] 胡智瑜, 马青松. 异质元素改性聚硅氧烷衍生SiOC陶瓷研究进展[J]. 材料工程, 2019, 47(7): 19-25.
[2] 张颖, 王宁, 杜艺, 石鑫, 王伟超, 张军战. 冷冻浇注制备多孔陶瓷的研究进展[J]. 材料工程, 2019, 47(7): 26-34.
[3] 周怡然, 刘虎, 杨金华, 姜卓钰, 吕晓旭, 焦健. 熔融渗透工艺制备SiC-TiSi2复相陶瓷的反应机理[J]. 材料工程, 2019, 47(6): 88-93.
[4] 史思涛, 陈畅, 郭政, 李国新, 伍勇华, 苏明周, 王会萌. 原料配比对多孔MgO/Fe-Cr-Ni复合材料性能的影响[J]. 材料工程, 2019, 47(4): 167-173.
[5] 余煜玺, 夏范森, 黄奇凡. 石墨烯改性PDC-SiCNO陶瓷的制备及其介电性能[J]. 材料工程, 2019, 47(3): 8-14.
[6] 宋仁国. 微弧氧化技术的发展及其应用[J]. 材料工程, 2019, 47(3): 50-62.
[7] 陈鹏, 朱小刚, 吴甲民, 王联凤, 史玉升. 基于SLS/CIP工艺SiC陶瓷的制备及其性能[J]. 材料工程, 2019, 47(3): 87-93.
[8] 孟祥龙, 衣明东, 肖光春, 陈照强, 许崇海. 石墨烯纳米片增韧Al2O3基纳米复合陶瓷刀具材料[J]. 材料工程, 2019, 47(1): 25-31.
[9] 亢静锐, 董桂霞, 吕易楠, 李雷, 韩伟丹, 张茜. Eu2O3掺杂量及烧结温度对氧化铝基微波陶瓷性能的影响[J]. 材料工程, 2018, 46(8): 78-83.
[10] 王鹏, 张瑞英, 韩小伟, 刘天丽, 杨森. 不同压制压力制备的Al-TiO2-C细化剂对ZL101合金细化效果的影响[J]. 材料工程, 2018, 46(8): 84-90.
[11] 纪宏超, 张雪静, 裴未迟, 李耀刚, 郑镭, 叶晓濛, 陆永浩. 陶瓷3D打印技术及材料研究进展[J]. 材料工程, 2018, 46(7): 19-28.
[12] 陈敬炎, 吴甲民, 陈安南, 肖欢, 李国锐, 刘梦月, 李晨辉, 史玉升. 基于激光选区烧结的煤系高岭土多孔陶瓷的制备及其性能[J]. 材料工程, 2018, 46(7): 36-43.
[13] 卢国锋, 乔生儒. Si-O-C界面层对C/SiC-N复合材料力学性能和热膨胀性能的影响[J]. 材料工程, 2018, 46(7): 83-87.
[14] 于长清, 陈利, 裴雨辰. 碳纤维表面涂层对碳纤维增强锂铝硅玻璃陶瓷复合材料热导率的影响[J]. 材料工程, 2018, 46(6): 101-105.
[15] 李建, 杜明, 黄志雄. PMN/CB/PF/ⅡR复合材料制备及其阻尼性能[J]. 材料工程, 2018, 46(6): 125-131.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn