Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (1): 38-42    DOI: 10.11868/j.issn.1001-4381.2015.000101
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
超双疏耐磨PPS基涂层的制备与性能
汪怀远, 王恩群, 孟旸, 朱艳吉
东北石油大学 化学化工学院, 黑龙江 大庆 163318
Preparation and Properties of Superamphiphobic Wear-resistance PPS-based Coating
WANG Huai-yuan, WANG En-qun, MENG Yang, ZHU Yan-ji
Chemistry and Chemical Engineering School, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
全文: PDF(870 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以NH4HCO3为造孔剂,碳纳米管(CNTs)为纳米级纤维填料,采用简单的喷涂工艺制备出超双疏耐磨聚苯硫醚(PPS)基涂层。采用扫描电镜(SEM)、接触角测量仪分析涂层的表面形貌和疏水、疏油性能。采用定载砂纸打磨法测试双疏涂层的耐磨损性能。结果表明:造孔后的涂层表面粗糙,表面的多孔结构和CNTs构成了特殊的微纳二元复合网络结构。当NH4HCO3的含量为5%(质量分数)时,涂层实现超疏水和超疏油,对水、甘油和乙二醇的接触角分别为162°,158°和152°。用砂纸反复打磨10000次后,涂层表面轻微磨损,仍保持了高疏水效果,具有良好的耐磨性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汪怀远
王恩群
孟旸
朱艳吉
关键词 超双疏复合材料聚苯硫醚耐磨纳米结构表面    
Abstract:Superamphiphobic wear-resistance PPS-based coatings were prepared by a simple spraying method with a pore-forming reagent of NH4HCO3 and nano-filler of carbon nanotubes (CNTs).The surface morphology and the hydrophobicity,oleophobicity of the coating were analyzed by scanning electron microscope (SEM) and contact angle meter.The wear-resistance of the coating was verified by sanding method with given load.The results indicate that a rough surface is obtained after pore-forming,and the porous structures in combination with the CNTs construct the special micro/nano-scale network structures.When the mass fraction of NH4HCO3 is 5%,the contact angles of the coating for water,glycerine and ethylene glycol are 162°,158° and 152°,showing superamphiphobic property.After polished 10000 times by abrasive paper,the coating shows slight friction marks and remains high hydrophobicity,exhibiting excellent wear-resistance.
Key wordssuperamphiphobicity    composite material    polyphenylene sulfide    wear-resistance    nano structure    surface
收稿日期: 2015-01-20      出版日期: 2017-01-19
中图分类号:  TQ317  
通讯作者: 朱艳吉(1978-),女,教授,博士,从事聚合物基耐磨防腐涂层的基础与应用研究,联系地址:黑龙江省大庆市高新技术开发区发展路199号东北石油大学化学化工学院(163318),E-mail:jsipt@163.com     E-mail: jsipt@163.com
引用本文:   
汪怀远, 王恩群, 孟旸, 朱艳吉. 超双疏耐磨PPS基涂层的制备与性能[J]. 材料工程, 2017, 45(1): 38-42.
WANG Huai-yuan, WANG En-qun, MENG Yang, ZHU Yan-ji. Preparation and Properties of Superamphiphobic Wear-resistance PPS-based Coating. Journal of Materials Engineering, 2017, 45(1): 38-42.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.000101      或      http://jme.biam.ac.cn/CN/Y2017/V45/I1/38
[1] FENG X J, JIANG L. Design and creation of superwetting/antiwetting surfaces[J]. Advanced Materials, 2006, 18(23):3063-3078.
[2] XUE Z, LIU M, JIANG L. Recent developments in polymeric superoleophobic surfaces[J]. Journal of Polymer Science Part B:Polymer Physics, 2012, 50(17):1209-1224.
[3] LIU M J, ZHENG Y M, ZHAI J, et al. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion[J]. Accounts of Chemical Research, 2009, 43(3):368-377.
[4] UYANIK M, ARPAC E, SCHMIDT H, et al. Heat-resistant hydrophobic-oleophobic coatings[J]. Journal of Applied Polymer Science, 2006, 100(3):2386-2392.
[5] CHOI W, TUTEJA A, CHHATRE S, et al. Fabrics with tunable oleophobicity[J]. Advanced Materials, 2009, 21(21):2190-2195.
[6] BELLANGER H, DARMANIN T, GUITTARD F. Surface structuration (micro and/or nano) governed by the fluorinated tail lengths toward superoleophobic surfaces[J]. Langmuir, 2011, 28(1):186-192.
[7] 江雷. 从自然到仿生的超疏水纳米界面材料[J]. 化工进展,2003, 22(12):1258-1264. JIANG L. Nanostructured materials with superhydrophobic surface-from nature to biomimesis[J]. Chemical Industry and Engineering Progress, 2003, 22(12):1258-1264.
[8] LIU Y, XIU Y H, HESS D W, et al. Silicon surface structure-controlled oleophobicity[J]. Langmuir, 2010, 26(11):8908-8913.
[9] XUE C H, LI Y R, ZHANG P, et al. Washable and wear-resistant superhydrophobic surfaces with self-cleaning property by chemical etching of fibers and hydrophobization[J]. ACS Applied Materials & Interfaces, 2014, 6(13):10153-10161.
[10] WANG H, XUE Y, DING J, et al. Durable, self-healing superhydrophobic and superoleophobic surfaces from fluorinated-decyl polyhedral oligomeric silsesquioxane and hydrolyzed fluorinated alkyl silane[J]. Angewandte Chemie International Edition, 2011, 50(48):11433-11436.
[11] CAI S, ZHANG Y, ZHANG H, et al. Sol-gel preparation of hydrophobic silica antireflective coatings with low refractive index by base/acid two-step catalysis[J]. ACS Applied Materials & Interfaces, 2014, 6(14):11470-11475.
[12] 郑燕升, 何易, 青勇权, 等. SiO2/聚四氟乙烯杂化超疏水涂层的制备[J]. 化工进展, 2012, 31(7):1562-1566. ZHENG Y S, HE Y, QING Y Q, et al. Preparation of SiO2/polytetrafluoroethylene hybrid superhydrophobic coatings[J]. Chemical Industry and Engineering Progress, 2012, 31(7):1562-1566.
[13] ARIA A I, GHARIB M. Physicochemical characteristics and droplet impact dynamics of superhydrophobic carbon nanotube arrays[J]. Langmuir, 2014, 30(23):6780-6790.
[14] LI L, BREEDVELD V, HESS D W. Design and fabrication of superamphiphobic paper surfaces[J]. ACS Applied Materials & Interfaces, 2013, 5(11):5381-5386.
[15] WANG H, ZHAO J, ZHU Y, et al. The fabrication, nano/micro-structure, heat- and wear-resistance of the superhydrophobic PPS/PTFE composite coatings[J]. Journal of Colloid and Interface Science, 2013, 402(15):253-258.
[16] WANG H, YAN L, GAO D, et al. Tribological properties of superamphiphobic PPS/PTFE composite coating in the oilfield produced water[J]. Wear, 2014, 319(1):62-68.
[17] ZHANG B J, KUOK C, KIM K J, et al. Dropwise steam condensation on various hydrophobic surfaces:polyphenylene sulfide (PPS), polytetrafluoroethylene (PTFE), and self-assembled micro/nano silver (SAMS)[J]. International Journal of Heat and Mass Transfer, 2015, 89:353-358.
[18] CHO H, KIM D, LEE C, et al. A simple fabrication method for mechanically robust superhydrophobic surface by hierarchical aluminum hydroxide structures[J]. Current Applied Physics, 2013, 13(4):762-767.
[19] AULIN C, YUN S H, WÅGBERG L, et al. Design of highly oleophobic cellulose surfaces from structured silicon templates[J]. ACS Applied Materials & Interfaces, 2009, 1(11):2443-2452.
[20] LI Y, DAI S, JOHN J, et al. Superhydrophobic surfaces from hierarchically structured wrinkled polymers[J]. ACS Applied Materials & Interfaces, 2013, 5(21):11066-11073.
[21] KOTA A K, LI Y, MABRY J M, et al. Hierarchically structured superoleophobic surfaces with ultralow contact angle hysteresis[J]. Advanced Materials, 2012, 24(43):5838-5843.
[1] 王晨, 燕绍九, 南文争, 陈翔. 表面活性剂对高浓度石墨烯水分散液制备的影响[J]. 材料工程, 2019, 47(7): 50-56.
[2] 张平生, 辛勇, 曹传亮, 艾凡荣. 壳聚糖/羟基磷灰石表面修饰聚己内酯多孔骨支架的制备及性能[J]. 材料工程, 2019, 47(7): 64-70.
[3] 柯鹏, 蔡飞, 胡凯, 张世宏, 王硕煜, 朱广宏, 倪振航, 胡小红. 黏结层及真空退火对NiCr-30% Cr3C2金属-陶瓷喷涂层性能的影响[J]. 材料工程, 2019, 47(7): 144-150.
[4] 王桂芳, 刘忠侠, 张国鹏. 球磨时间对热压烧结制备TiC-CoCrFeNi复合材料微观组织及力学性能的影响[J]. 材料工程, 2019, 47(6): 94-100.
[5] 冀光普, 何秀芳, 廖海峰, 戴乐阳, 孙迪, 蔡谷昌. 等离子体辅助球磨制备表面修饰片状纳米Cu粉及摩擦学性能[J]. 材料工程, 2019, 47(6): 114-120.
[6] 尚楷, 武志红, 张路平, 王倩, 郑海康. 模板法制备MoSi2/竹炭复合材料及吸波性能[J]. 材料工程, 2019, 47(5): 122-128.
[7] 张晓颖, 荣新山, 徐吉成, 周向同, 吴智仁. 玄武岩纤维表面改性对生物膜附着性能的影响[J]. 材料工程, 2019, 47(5): 129-136.
[8] 何宗倍, 张瑞谦, 付道贵, 李鸣, 陈招科, 邱邵宇. 不同界面SiC纤维束复合材料的拉伸力学行为[J]. 材料工程, 2019, 47(4): 25-31.
[9] 李亚锋, 礼嵩明, 黑艳伟, 邢丽英, 陈祥宝. 太阳辐照对芳纶纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(4): 39-46.
[10] 李曦. 二维和零维纳米材料协同增强的高性能纳米复合材料[J]. 材料工程, 2019, 47(4): 47-55.
[11] 李芹, 盛利成, 董丽敏, 张彦飞, 金立国. ZnCo2O4及ZnCo2O4/rGO复合材料的制备与电化学性能[J]. 材料工程, 2019, 47(4): 71-76.
[12] 张航, 路媛媛, 王涛, 鲁亚冉, 刘德健. 激光熔覆WC/H13-Inconel625复合材料的冲击韧性与磨损性能[J]. 材料工程, 2019, 47(4): 127-134.
[13] 李惠, 肖文龙, 张艺镡, 马朝利. 多重结构Ti-B4C/Al2024复合材料的组织和力学性能[J]. 材料工程, 2019, 47(4): 152-159.
[14] 史思涛, 陈畅, 郭政, 李国新, 伍勇华, 苏明周, 王会萌. 原料配比对多孔MgO/Fe-Cr-Ni复合材料性能的影响[J]. 材料工程, 2019, 47(4): 167-173.
[15] 胡安俊, 龙剑平, 舒朝著. 设计稳定和可逆的锂-空气电池阴极催化剂的研究进展[J]. 材料工程, 2019, 47(3): 30-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn