Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (1): 38-42    DOI: 10.11868/j.issn.1001-4381.2015.000101
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
超双疏耐磨PPS基涂层的制备与性能
汪怀远, 王恩群, 孟旸, 朱艳吉
东北石油大学 化学化工学院, 黑龙江 大庆 163318
Preparation and Properties of Superamphiphobic Wear-resistance PPS-based Coating
WANG Huai-yuan, WANG En-qun, MENG Yang, ZHU Yan-ji
Chemistry and Chemical Engineering School, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
全文: PDF(870 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以NH4HCO3为造孔剂,碳纳米管(CNTs)为纳米级纤维填料,采用简单的喷涂工艺制备出超双疏耐磨聚苯硫醚(PPS)基涂层。采用扫描电镜(SEM)、接触角测量仪分析涂层的表面形貌和疏水、疏油性能。采用定载砂纸打磨法测试双疏涂层的耐磨损性能。结果表明:造孔后的涂层表面粗糙,表面的多孔结构和CNTs构成了特殊的微纳二元复合网络结构。当NH4HCO3的含量为5%(质量分数)时,涂层实现超疏水和超疏油,对水、甘油和乙二醇的接触角分别为162°,158°和152°。用砂纸反复打磨10000次后,涂层表面轻微磨损,仍保持了高疏水效果,具有良好的耐磨性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汪怀远
王恩群
孟旸
朱艳吉
关键词 超双疏复合材料聚苯硫醚耐磨纳米结构表面    
Abstract:Superamphiphobic wear-resistance PPS-based coatings were prepared by a simple spraying method with a pore-forming reagent of NH4HCO3 and nano-filler of carbon nanotubes (CNTs).The surface morphology and the hydrophobicity,oleophobicity of the coating were analyzed by scanning electron microscope (SEM) and contact angle meter.The wear-resistance of the coating was verified by sanding method with given load.The results indicate that a rough surface is obtained after pore-forming,and the porous structures in combination with the CNTs construct the special micro/nano-scale network structures.When the mass fraction of NH4HCO3 is 5%,the contact angles of the coating for water,glycerine and ethylene glycol are 162°,158° and 152°,showing superamphiphobic property.After polished 10000 times by abrasive paper,the coating shows slight friction marks and remains high hydrophobicity,exhibiting excellent wear-resistance.
Key wordssuperamphiphobicity    composite material    polyphenylene sulfide    wear-resistance    nano structure    surface
收稿日期: 2015-01-20      出版日期: 2017-01-19
中图分类号:  TQ317  
通讯作者: 朱艳吉(1978-),女,教授,博士,从事聚合物基耐磨防腐涂层的基础与应用研究,联系地址:黑龙江省大庆市高新技术开发区发展路199号东北石油大学化学化工学院(163318),E-mail:jsipt@163.com     E-mail: jsipt@163.com
引用本文:   
汪怀远, 王恩群, 孟旸, 朱艳吉. 超双疏耐磨PPS基涂层的制备与性能[J]. 材料工程, 2017, 45(1): 38-42.
WANG Huai-yuan, WANG En-qun, MENG Yang, ZHU Yan-ji. Preparation and Properties of Superamphiphobic Wear-resistance PPS-based Coating. Journal of Materials Engineering, 2017, 45(1): 38-42.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.000101      或      http://jme.biam.ac.cn/CN/Y2017/V45/I1/38
[1] FENG X J, JIANG L. Design and creation of superwetting/antiwetting surfaces[J]. Advanced Materials, 2006, 18(23):3063-3078.
[2] XUE Z, LIU M, JIANG L. Recent developments in polymeric superoleophobic surfaces[J]. Journal of Polymer Science Part B:Polymer Physics, 2012, 50(17):1209-1224.
[3] LIU M J, ZHENG Y M, ZHAI J, et al. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion[J]. Accounts of Chemical Research, 2009, 43(3):368-377.
[4] UYANIK M, ARPAC E, SCHMIDT H, et al. Heat-resistant hydrophobic-oleophobic coatings[J]. Journal of Applied Polymer Science, 2006, 100(3):2386-2392.
[5] CHOI W, TUTEJA A, CHHATRE S, et al. Fabrics with tunable oleophobicity[J]. Advanced Materials, 2009, 21(21):2190-2195.
[6] BELLANGER H, DARMANIN T, GUITTARD F. Surface structuration (micro and/or nano) governed by the fluorinated tail lengths toward superoleophobic surfaces[J]. Langmuir, 2011, 28(1):186-192.
[7] 江雷. 从自然到仿生的超疏水纳米界面材料[J]. 化工进展,2003, 22(12):1258-1264. JIANG L. Nanostructured materials with superhydrophobic surface-from nature to biomimesis[J]. Chemical Industry and Engineering Progress, 2003, 22(12):1258-1264.
[8] LIU Y, XIU Y H, HESS D W, et al. Silicon surface structure-controlled oleophobicity[J]. Langmuir, 2010, 26(11):8908-8913.
[9] XUE C H, LI Y R, ZHANG P, et al. Washable and wear-resistant superhydrophobic surfaces with self-cleaning property by chemical etching of fibers and hydrophobization[J]. ACS Applied Materials & Interfaces, 2014, 6(13):10153-10161.
[10] WANG H, XUE Y, DING J, et al. Durable, self-healing superhydrophobic and superoleophobic surfaces from fluorinated-decyl polyhedral oligomeric silsesquioxane and hydrolyzed fluorinated alkyl silane[J]. Angewandte Chemie International Edition, 2011, 50(48):11433-11436.
[11] CAI S, ZHANG Y, ZHANG H, et al. Sol-gel preparation of hydrophobic silica antireflective coatings with low refractive index by base/acid two-step catalysis[J]. ACS Applied Materials & Interfaces, 2014, 6(14):11470-11475.
[12] 郑燕升, 何易, 青勇权, 等. SiO2/聚四氟乙烯杂化超疏水涂层的制备[J]. 化工进展, 2012, 31(7):1562-1566. ZHENG Y S, HE Y, QING Y Q, et al. Preparation of SiO2/polytetrafluoroethylene hybrid superhydrophobic coatings[J]. Chemical Industry and Engineering Progress, 2012, 31(7):1562-1566.
[13] ARIA A I, GHARIB M. Physicochemical characteristics and droplet impact dynamics of superhydrophobic carbon nanotube arrays[J]. Langmuir, 2014, 30(23):6780-6790.
[14] LI L, BREEDVELD V, HESS D W. Design and fabrication of superamphiphobic paper surfaces[J]. ACS Applied Materials & Interfaces, 2013, 5(11):5381-5386.
[15] WANG H, ZHAO J, ZHU Y, et al. The fabrication, nano/micro-structure, heat- and wear-resistance of the superhydrophobic PPS/PTFE composite coatings[J]. Journal of Colloid and Interface Science, 2013, 402(15):253-258.
[16] WANG H, YAN L, GAO D, et al. Tribological properties of superamphiphobic PPS/PTFE composite coating in the oilfield produced water[J]. Wear, 2014, 319(1):62-68.
[17] ZHANG B J, KUOK C, KIM K J, et al. Dropwise steam condensation on various hydrophobic surfaces:polyphenylene sulfide (PPS), polytetrafluoroethylene (PTFE), and self-assembled micro/nano silver (SAMS)[J]. International Journal of Heat and Mass Transfer, 2015, 89:353-358.
[18] CHO H, KIM D, LEE C, et al. A simple fabrication method for mechanically robust superhydrophobic surface by hierarchical aluminum hydroxide structures[J]. Current Applied Physics, 2013, 13(4):762-767.
[19] AULIN C, YUN S H, WÅGBERG L, et al. Design of highly oleophobic cellulose surfaces from structured silicon templates[J]. ACS Applied Materials & Interfaces, 2009, 1(11):2443-2452.
[20] LI Y, DAI S, JOHN J, et al. Superhydrophobic surfaces from hierarchically structured wrinkled polymers[J]. ACS Applied Materials & Interfaces, 2013, 5(21):11066-11073.
[21] KOTA A K, LI Y, MABRY J M, et al. Hierarchically structured superoleophobic surfaces with ultralow contact angle hysteresis[J]. Advanced Materials, 2012, 24(43):5838-5843.
[1] 程明阳, 郝世明, 谢敬佩, 王爱琴, 马窦琴, 孙亚丽. SiCP/Al-Cu复合材料的高温热变形行为[J]. 材料工程, 2017, 45(2): 17-23.
[2] 查柏林, 高双林, 林浩, 罗雷, 张博文, 朱杰堂, 孙振生. 烧蚀角度对C/C复合材料烧蚀行为的影响[J]. 材料工程, 2017, 45(2): 54-59.
[3] 王红星, 毛向阳, 沈彤, 张月. 纳米TiC颗粒对Ni-TiC复合镀层组织与性能的影响[J]. 材料工程, 2017, 45(1): 52-57.
[4] 张玉波, 郭荣鑫, 夏海廷, 颜峰, 林志伟. WCp含量对粉末冶金Cu/WCp复合材料疲劳裂纹扩展行为的影响[J]. 材料工程, 2017, 45(1): 85-92.
[5] 洪起虎, 燕绍九, 杨程, 张晓艳, 戴圣龙. 氧化石墨烯/铜基复合材料的微观结构及力学性能[J]. 材料工程, 2016, 44(9): 1-7.
[6] 彭世广, 宋仁伯, 王威, 谭志东, 蔡长宏, 王林炜杰. 热处理工艺对新型轻质奥氏体耐磨钢的组织与力学性能的影响[J]. 材料工程, 2016, 44(9): 24-31.
[7] 吴波, 郑帼, 孙玉, 崔莹, 吴炳洋. 有机电解液电化学改性PAN基碳纤维的表面性能[J]. 材料工程, 2016, 44(9): 52-57.
[8] 王云飞, 张朋, 刘刚, 肇研, 包建文. 航空发动机用聚酰亚胺树脂基复合材料衬套研究进展[J]. 材料工程, 2016, 44(9): 121-128.
[9] 徐学宏, 王小群, 闫超, 王旭. 环氧树脂及其复合材料微波固化研究进展[J]. 材料工程, 2016, 44(8): 111-120.
[10] 李佩桓, 张勇, 王涛, 张亚洲, 李钊, 贾崇林, 曲选辉. 连续SiC纤维增强金属基复合材料研究进展[J]. 材料工程, 2016, 44(8): 121-129.
[11] 徐建林, 周生刚, 牛磊, 杨文龙, 王程程, 文琛. 不同表面活性剂处理的Sb2O3对PVC复合材料阻燃性能的影响[J]. 材料工程, 2016, 44(8): 64-69.
[12] 张占辉, 王义强, 叶国云, 韩子渊, 张志杰, 骆海波. 仿生非光滑表面对对磨副的损伤机理研究[J]. 材料工程, 2016, 44(8): 98-103.
[13] 蔡建明, 弭光宝, 高帆, 黄浩, 曹京霞, 黄旭, 曹春晓. 航空发动机用先进高温钛合金材料技术研究与发展[J]. 材料工程, 2016, 44(8): 1-10.
[14] 刘猛, 白书欣, 李顺, 赵恂, 熊德赣. 界面改性对SiCp/Cu复合材料热物理性能的影响[J]. 材料工程, 2016, 44(8): 11-16.
[15] 朱永长, 魏尊杰, 荣守范, 宋春梅. 双液金属复合耐磨板厚度对复合层组织和性能的影响[J]. 材料工程, 2016, 44(8): 17-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn