Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (1): 38-42    DOI: 10.11868/j.issn.1001-4381.2015.000101
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
超双疏耐磨PPS基涂层的制备与性能
汪怀远, 王恩群, 孟旸, 朱艳吉
东北石油大学 化学化工学院, 黑龙江 大庆 163318
Preparation and Properties of Superamphiphobic Wear-resistance PPS-based Coating
WANG Huai-yuan, WANG En-qun, MENG Yang, ZHU Yan-ji
Chemistry and Chemical Engineering School, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
全文: PDF(870 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以NH4HCO3为造孔剂,碳纳米管(CNTs)为纳米级纤维填料,采用简单的喷涂工艺制备出超双疏耐磨聚苯硫醚(PPS)基涂层。采用扫描电镜(SEM)、接触角测量仪分析涂层的表面形貌和疏水、疏油性能。采用定载砂纸打磨法测试双疏涂层的耐磨损性能。结果表明:造孔后的涂层表面粗糙,表面的多孔结构和CNTs构成了特殊的微纳二元复合网络结构。当NH4HCO3的含量为5%(质量分数)时,涂层实现超疏水和超疏油,对水、甘油和乙二醇的接触角分别为162°,158°和152°。用砂纸反复打磨10000次后,涂层表面轻微磨损,仍保持了高疏水效果,具有良好的耐磨性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汪怀远
王恩群
孟旸
朱艳吉
关键词 超双疏复合材料聚苯硫醚耐磨纳米结构表面    
Abstract:Superamphiphobic wear-resistance PPS-based coatings were prepared by a simple spraying method with a pore-forming reagent of NH4HCO3 and nano-filler of carbon nanotubes (CNTs).The surface morphology and the hydrophobicity,oleophobicity of the coating were analyzed by scanning electron microscope (SEM) and contact angle meter.The wear-resistance of the coating was verified by sanding method with given load.The results indicate that a rough surface is obtained after pore-forming,and the porous structures in combination with the CNTs construct the special micro/nano-scale network structures.When the mass fraction of NH4HCO3 is 5%,the contact angles of the coating for water,glycerine and ethylene glycol are 162°,158° and 152°,showing superamphiphobic property.After polished 10000 times by abrasive paper,the coating shows slight friction marks and remains high hydrophobicity,exhibiting excellent wear-resistance.
Key wordssuperamphiphobicity    composite material    polyphenylene sulfide    wear-resistance    nano structure    surface
收稿日期: 2015-01-20      出版日期: 2017-01-19
中图分类号:  TQ317  
通讯作者: 朱艳吉(1978-),女,教授,博士,从事聚合物基耐磨防腐涂层的基础与应用研究,联系地址:黑龙江省大庆市高新技术开发区发展路199号东北石油大学化学化工学院(163318),E-mail:jsipt@163.com     E-mail: jsipt@163.com
引用本文:   
汪怀远, 王恩群, 孟旸, 朱艳吉. 超双疏耐磨PPS基涂层的制备与性能[J]. 材料工程, 2017, 45(1): 38-42.
WANG Huai-yuan, WANG En-qun, MENG Yang, ZHU Yan-ji. Preparation and Properties of Superamphiphobic Wear-resistance PPS-based Coating. Journal of Materials Engineering, 2017, 45(1): 38-42.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.000101      或      http://jme.biam.ac.cn/CN/Y2017/V45/I1/38
[1] FENG X J, JIANG L. Design and creation of superwetting/antiwetting surfaces[J]. Advanced Materials, 2006, 18(23):3063-3078.
[2] XUE Z, LIU M, JIANG L. Recent developments in polymeric superoleophobic surfaces[J]. Journal of Polymer Science Part B:Polymer Physics, 2012, 50(17):1209-1224.
[3] LIU M J, ZHENG Y M, ZHAI J, et al. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion[J]. Accounts of Chemical Research, 2009, 43(3):368-377.
[4] UYANIK M, ARPAC E, SCHMIDT H, et al. Heat-resistant hydrophobic-oleophobic coatings[J]. Journal of Applied Polymer Science, 2006, 100(3):2386-2392.
[5] CHOI W, TUTEJA A, CHHATRE S, et al. Fabrics with tunable oleophobicity[J]. Advanced Materials, 2009, 21(21):2190-2195.
[6] BELLANGER H, DARMANIN T, GUITTARD F. Surface structuration (micro and/or nano) governed by the fluorinated tail lengths toward superoleophobic surfaces[J]. Langmuir, 2011, 28(1):186-192.
[7] 江雷. 从自然到仿生的超疏水纳米界面材料[J]. 化工进展,2003, 22(12):1258-1264. JIANG L. Nanostructured materials with superhydrophobic surface-from nature to biomimesis[J]. Chemical Industry and Engineering Progress, 2003, 22(12):1258-1264.
[8] LIU Y, XIU Y H, HESS D W, et al. Silicon surface structure-controlled oleophobicity[J]. Langmuir, 2010, 26(11):8908-8913.
[9] XUE C H, LI Y R, ZHANG P, et al. Washable and wear-resistant superhydrophobic surfaces with self-cleaning property by chemical etching of fibers and hydrophobization[J]. ACS Applied Materials & Interfaces, 2014, 6(13):10153-10161.
[10] WANG H, XUE Y, DING J, et al. Durable, self-healing superhydrophobic and superoleophobic surfaces from fluorinated-decyl polyhedral oligomeric silsesquioxane and hydrolyzed fluorinated alkyl silane[J]. Angewandte Chemie International Edition, 2011, 50(48):11433-11436.
[11] CAI S, ZHANG Y, ZHANG H, et al. Sol-gel preparation of hydrophobic silica antireflective coatings with low refractive index by base/acid two-step catalysis[J]. ACS Applied Materials & Interfaces, 2014, 6(14):11470-11475.
[12] 郑燕升, 何易, 青勇权, 等. SiO2/聚四氟乙烯杂化超疏水涂层的制备[J]. 化工进展, 2012, 31(7):1562-1566. ZHENG Y S, HE Y, QING Y Q, et al. Preparation of SiO2/polytetrafluoroethylene hybrid superhydrophobic coatings[J]. Chemical Industry and Engineering Progress, 2012, 31(7):1562-1566.
[13] ARIA A I, GHARIB M. Physicochemical characteristics and droplet impact dynamics of superhydrophobic carbon nanotube arrays[J]. Langmuir, 2014, 30(23):6780-6790.
[14] LI L, BREEDVELD V, HESS D W. Design and fabrication of superamphiphobic paper surfaces[J]. ACS Applied Materials & Interfaces, 2013, 5(11):5381-5386.
[15] WANG H, ZHAO J, ZHU Y, et al. The fabrication, nano/micro-structure, heat- and wear-resistance of the superhydrophobic PPS/PTFE composite coatings[J]. Journal of Colloid and Interface Science, 2013, 402(15):253-258.
[16] WANG H, YAN L, GAO D, et al. Tribological properties of superamphiphobic PPS/PTFE composite coating in the oilfield produced water[J]. Wear, 2014, 319(1):62-68.
[17] ZHANG B J, KUOK C, KIM K J, et al. Dropwise steam condensation on various hydrophobic surfaces:polyphenylene sulfide (PPS), polytetrafluoroethylene (PTFE), and self-assembled micro/nano silver (SAMS)[J]. International Journal of Heat and Mass Transfer, 2015, 89:353-358.
[18] CHO H, KIM D, LEE C, et al. A simple fabrication method for mechanically robust superhydrophobic surface by hierarchical aluminum hydroxide structures[J]. Current Applied Physics, 2013, 13(4):762-767.
[19] AULIN C, YUN S H, WÅGBERG L, et al. Design of highly oleophobic cellulose surfaces from structured silicon templates[J]. ACS Applied Materials & Interfaces, 2009, 1(11):2443-2452.
[20] LI Y, DAI S, JOHN J, et al. Superhydrophobic surfaces from hierarchically structured wrinkled polymers[J]. ACS Applied Materials & Interfaces, 2013, 5(21):11066-11073.
[21] KOTA A K, LI Y, MABRY J M, et al. Hierarchically structured superoleophobic surfaces with ultralow contact angle hysteresis[J]. Advanced Materials, 2012, 24(43):5838-5843.
[1] 张波波, 张文娟, 杜雪岩, 王有良. 铁基磁性纳米材料吸附废水中重金属离子研究进展[J]. 材料工程, 2020, 48(7): 93-102.
[2] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[3] 刘晓明, 任志宇, 陈陆平, 李国建, 王强, 周济. 红外隐身超材料[J]. 材料工程, 2020, 48(6): 1-11.
[4] 傅晓建, 石磊, 崔铁军. 太赫兹超材料及其成像应用研究进展[J]. 材料工程, 2020, 48(6): 12-22.
[5] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[6] 杜晶晶, 赵军伟, 程晓民, 施飞. 高效光催化降解气相苯纳米TiO2微球的制备[J]. 材料工程, 2020, 48(5): 100-105.
[7] 易振华, 冉丽萍, 易茂中. Ni-Cr-P焊膏钎焊C/C复合材料的组织和性能[J]. 材料工程, 2020, 48(5): 127-135.
[8] 毛杰, 马景涛, 邓畅光, 邓春明, 宋进兵, 刘敏, 宋鹏. 表面粗糙度对PS-PVD YSZ陶瓷层性能的影响[J]. 材料工程, 2020, 48(5): 144-150.
[9] 白明洁, 刘金龙, 齐志娜, 何江, 魏俊俊, 苗建印, 李成明. 石墨烯纳米流体研究进展[J]. 材料工程, 2020, 48(4): 46-59.
[10] 张从阳, 李志锐, 方东, 叶永盛, 叶喜葱, 吴海华. SiCp/AZ91D镁基纳米复合材料的室温拉伸行为及塑性变形机理[J]. 材料工程, 2020, 48(4): 108-115.
[11] 张芳芳, 段永川, 高安娜, 姚丹. 基于耦合法的二维三轴编织复合材料热学性能预测及验证[J]. 材料工程, 2020, 48(4): 151-157.
[12] 陈振, 张增志, 丛中卉, 王立宁, 吴浩平. 开孔型聚合物发泡材料的研究及应用进展[J]. 材料工程, 2020, 48(3): 1-9.
[13] 辛华, 刘建芳, 杨江鹏, 张辉, 赵星. 成膜基材对含氟丙烯酸酯/聚氨酯复合乳液自组织梯度化结构的影响[J]. 材料工程, 2020, 48(3): 59-65.
[14] 齐业雄, 姜亚明, 李嘉禄. 混杂比对碳/芳纶纤维混杂纬编双轴向多层衬纱织物增强复合材料力学性能的影响[J]. 材料工程, 2020, 48(2): 71-78.
[15] 刘继涛, 钏定泽, 杨泽斌, 陈希亮, 颜廷亭, 陈庆华. 氨基酸/羟基磷灰石复合材料的制备与表征及其在酸蚀牛牙釉质体外再矿化中的应用[J]. 材料工程, 2020, 48(2): 100-107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn