Please wait a minute...
材料工程  2017, Vol. 45 Issue (10): 12-17    DOI: 10.11868/j.issn.1001-4381.2015.000498
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
刘阳龙1, 郑玉婴2, 曹宁宁2, 王翔2
1 福州大学 石油化工学院, 福州 350108;
2 福州大学 材料科学与工程学院, 福州 350108
Synthesis and Photocatalytic Activity of Iron Doped CdS by Hydrothermal Method
LIU Yang-long1, ZHENG Yu-ying2, CAO Ning-ning2, WANG xiang2
1 School of Chemical Engineering, Fuzhou University, Fuzhou 350108, China;
2 College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
全文: PDF(4312 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以硝酸镉、硝酸铁和硫脲为原料,水为溶剂,通过水热法一步合成铁掺杂的硫化镉。产物经SEM,XRD,EDS和XPS等技术进行表征,以亚甲基蓝的光催化降解为目标反应,评价其光催化活性。结果表明:水热温度对硫化镉的形貌影响较大,不同反应温度可分别得到球状、花状、簇状和棒状的硫化镉,其中花状硫化镉的光催化性能最高。XRD分析表明,160℃反应时,所得掺铁的硫化镉均为六方晶体结构。光催化实验表明,铁掺杂能进一步提高硫化镉的催化活性,当Fe和Cd的掺杂比为1∶10时,催化效果最佳。
E-mail Alert
关键词 硫化镉水热法形貌铁掺杂光催化    
Abstract:Fe-doped cadmium sulfide was prepared by hydrothermal method in aqueous solution using cadmium nitrate, ferric nitrate and thiourea as raw materials. The samples were characterized by SEM, XRD, EDS and XPS. The photocatalytic degradation of methylene blue (MB) in aqueous solution was used as a target reaction to evaluate their photocatalytic activity. The experimental results show that the reaction temperature has a great effect on the morphology of cadmium sulfide, and spherical, flowerlike, clustered and rodlike cadmium sulfide are obtained in various reaction temperatures. Among them, the photocatalytic activity of flowerlike CdS is observed to be better than other CdS materials. The XRD indicates that Fe-doped cadmium sulfide is hexagonal crystal structure when the reaction temperature is 160℃. The experimental results also indicate that Fe-doped can obviously improve the photocatalytic activity of cadmium sulfide and when the doping ratio of Fe to Cd is 1:10, the photocatalytic effect is the best of all.
Key wordsCdS    hydrothermal method    morphology    iron doping    photocatalytic
收稿日期: 2015-04-27      出版日期: 2017-10-18
中图分类号:  O644  
通讯作者: 郑玉婴(1959-),女,博士,教授,博士生导师,研究方向:功能高分子复合材料,联系地址:福建省福州市闽侯县上街镇大学城学园路2号福州大学新校区材料科学与工程学院(350108),     E-mail:
刘阳龙, 郑玉婴, 曹宁宁, 王翔. 水热法合成铁掺杂的硫化镉及光催化性能[J]. 材料工程, 2017, 45(10): 12-17.
LIU Yang-long, ZHENG Yu-ying, CAO Ning-ning, WANG xiang. Synthesis and Photocatalytic Activity of Iron Doped CdS by Hydrothermal Method. Journal of Materials Engineering, 2017, 45(10): 12-17.
链接本文:      或
[1] TANG H X,YAN M,ZHANG H,et al, Preparation and characterization of water-soluble CdS nanocrystals by surface modification of ethylene diamine[J]. Materials Letters,2005,59(8/9):1024-1027.
[2] ALLINSON G, STAGNITTI F, COLVILLE S, et al. Growth of floating aquatic macrophytes in alkaline industrial wastewaters[J]. Journal of Environmental Engineering, 2000, 126(12):1103-1107.
[3] HODOS M,HORVATH E,HASPEL H,et al. Photosensitization of ion-exchangeable titanate nanotubes by CdS nanoparticles[J]. Chem Phy Lett,2004,399(4/6):512-515.
[4] LIU Y B. Highly stable CdS-modified short TiO2 nanotube array electrode for efficient visible-light hydrogen generation[J]. International Journal of Hydrogen Energy,2011,36(1):167-174.
[5] TANG H X,YAH M,ZHANG H,et al. Preparation and characterization of water-souble CdS nanocrystals by surface modification of ethylene diamine[J]. Mater Lett,2005,59(8/9):1024-1027.
[6] DLAZJ G,PLANELLES J. Theoretical characterization of triangular CdS nanocrystals:a tight-binding approach[J]. Langmuir,2004,20(25):11278-11284.
[7] TAKAYUKI H,YOKO B,KOMASAWA I. Immobilization of CdS nanoparticles formed in reverse micelles onto aluminosilicate supports and their photocatalytic properties[J]. J Colloid Interface Sci,2005,288(2):513-516.
[8] SHARKEY J J,DHANASEKARAN V,LEE C W,et al. Microstructural parameters and optical constants of CdS thin films synthesized with various bath temperature[J]. Chem Phys Lett,2011,503(1/3):86-90.
[9] 陈昱,王京钰,李维尊,等. 新型二氧化钛基光催化材料的研究进展[J]. 材料工程, 2016, 44(3):103-113. CHEN Y,WANG J Y,LI W Z,et al. Research process in TiO2-based photocatalysis material[J]. Journal of Materials Engineering,2016, 44(3):103-113.
[10] XING C J,ZHANG Y J,YAN W,et al. Band structure-controlled solid solution of Cd1-x ZnxS photocatalyst for hydrogen production by water splitting[J]. International Journal of Hydrogen Energy,2006,31(14):2018-2024.
[11] JANG J S,LI W,LEE J S.Fabrication of CdS/TiO2 nano-bulk composite photocatalysts for hydrogen production from aqueous H2S solution under visible light[J].Chem Phys Lett,2006,425(4/6):278-282.
[12] HIRAI T,BANDO Y,KOMASAWA I.Immobilization of CdS nanoparticles formed in reverse micelles onto alumina particles and their photocatalytic properties[J].J Phys Chem B,2002,106(35):8967-8970.
[13] 张平, 莫尊理, 张春,等. 磁响应性TiO2/石墨烯纳米复合材料的合成及光催化性能[J]. 材料工程, 2015, 43(3):72-77. ZHANG P,MO Z L,ZHANG C,et al. Preparation and photocatalytic properties of magnetic responsive TiO2/graphene nanocomposites[J]. Journal of Materials Engineering,2015, 43(3):72-77.
[14] CAO Y C,WANG J. One-pot synthesis of high-quality zinc-blende CdS nanocrystals[J]. J Am Chem Soc,2004,126(44):14336-14337.
[15] LI J X,XU J H,DAI W L,et al. Direct hydro-alcohol thermal synthesis of special core-shell structured Fe-doped titania microspheres with extended visible light response and enhanced photoactivity[J]. Appl Catal B:Environ,2009,85(3/4):162-170.
[16] YANG X H,WU Q S,LI L,et al. Controlled synthesis of the semiconductor CdS quasi-nanospheres, nanoshuttles, nanowires and nanotubes by the reverse micelle systems with different surfactants[J]. Colloids and Surfaces A:Physicochem Eng Aspects,2005,264(264):172-178.
[17] 张言波,邵华峰,钱雪峰,等. 单分散球形硫化镉粒子的制备及其形貌控制[J]. 无机材料学报,2005,20(3):575-579. ZHANG Y B,SHAO H F,QIAN X F,et al.Preparation of uniform cadmium sulfide spheres and their controllable morphology[J].Inorg Mater,2005,20(3):575-579.
[18] GAUTAM U K,SESHADRI R S,RAO C N R. A solvothermal route to CdS nanocrystals[J]. Chem Phys Lett,2003,375(5):560-564.
[19] XU D,LIU Z,LIANG J,et al. Solvothermal synthesis of CdS nanowires in a mixed solvent of ethylenediamine and dodecanethiol[J]. J Phys Chem B,2005,109(30):14344-14349.
[20] CAO H Q,WANG G Z,ZHANG S C,et al. Growth and optical properties of wurtzite-type CdS nanocrystals[J]. Inorg Chem,2006,45(13):5103-5108.
[21] YANG J,ZENG J H,YU S H,et al.Formation process of CdS nanorods via solvothermal route[J]. Chem Mater,2000,12(11):3295-3263.
[22] JING D W,GUO L J. A novel method for the preparation of a highly stable and active CdS photocatalyst with a special surface nanostructure[J]. J Phys Chem B,2006,110(23):11139-11145.
[23] SO W,KIM K,MOON S. Photo-production of hydrogen over the CdS-TiO2 nano-composite particulate films treated with TiCl4[J]. Int J Hydrogen Energy,2004,29(3):229-234.
[24] 赵荣祥,李秀萍,徐铸德. 离子液辅助水热法合成树枝状硫化镉及光催化性能[J]. 材料工程,2014(2):7-12. ZHAO R X,LI X P,XU Z D. Synthesis and photocatalytic performance of dendritic CdS nanostructures by an ionic liquid-assisted hydrothermal route[J]. Journal of Materials Engineering,2014(2):7-12.
[25] 钱留琴,唐为华. 水热法制备CdS纳米结构[J]. 功能材料,2009,40(5):861-862. QIAN L Q,TANG W H. Preparation of CdS nanostructures by hydrothermal method[J]. Journal of Functional Materials,2009,40(5):861-862.
[26] REN X X,ZHAO G L,LI H,et al. The effect of different pH modifier on formation of CdS nanoparticles[J]. Journal of Alloys and Compounds,2008,465(1-2):534-539.
[27] ZHAI Y G,LIU F Q,ZHANG Q,et al. Synthesis of magnetite nanoparticle aqueous dispersions in an ionic liquid containing acrylic acid anion[J]. Colloids Surf A:Physicochem Eng Aspects,2009,332(2/3):98-102.
[28] HU B Y,JING Z Z,HUANG J F,et al. Synthesis of hierarchical hollow spherical CdS nanostructures by microwave hydrothermal process[J]. Transactions of Nonferrous Metals Society of China,2012,22(1):89-94.
[29] XU D,CAO A M,DENG W L. Self-assembly and photocatalytic properties of clustered and flowerlike CdS nanostructures[J]. Acta Phys-Chim Sin,2008,24(7):1219-1224.
[30] YANG F,YAN N N,HUANG S,et al. Zn-doped CdS nanoarchitectures prepared by hydrothermal synthesis:mechanism for enhanced photocatalytic activity and stability under visible light[J]. Journal of Physical Chemistry,2012,116(16):9078-9084.
[31] BALRAM T,SINGH F,AVASTHI D K,et al. Structural,optical,electrical and position annihilation studies of CdS:Fe system[J]. Journal of Alloys and Compounds,2008,454(1/2):97-101.
[32] NAKANISHI T,OHTANI B,UOSAKI K. Fabrication and characterization of CdS-nanoparticle mono- and multilayers on a self-assembled monolayer of alkanedithiols on gold[J]. J Phys Chem B,1998,102(9):1571-1577.
[1] 李鹏鹏, 苏复, 顾正桂. CeO2-Ag/AgBr复合微球的合成及光催化性能[J]. 材料工程, 2020, 48(9): 69-76.
[2] 杨程, 时双强, 郝思嘉, 褚海荣, 戴圣龙. 石墨烯光催化材料及其在环境净化领域的研究进展[J]. 材料工程, 2020, 48(7): 1-13.
[3] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[4] 吴怡芳, 崇少坤, 柳永宁, 郭生武, 白利锋, 张翠萍, 李成山. 胶体纳米晶合成与形貌控制策略及机理[J]. 材料工程, 2020, 48(5): 23-30.
[5] 张传香, 陈亚玲, 巩云, 刘慧颖, 戴玉明, 丛园. 二硫化钼/石墨烯复合材料的一步水热合成及电催化性能[J]. 材料工程, 2020, 48(5): 56-61.
[6] 杜晶晶, 赵军伟, 程晓民, 施飞. 高效光催化降解气相苯纳米TiO2微球的制备[J]. 材料工程, 2020, 48(5): 100-105.
[7] 余萍, 刘施羽, 王敏, 付蕊. 改进溶液燃烧法制备Fe3+掺杂Bi24O31Cl10及其光催化性能的研究[J]. 材料工程, 2020, 48(2): 38-45.
[8] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[9] 朱晓东, 王尘茜, 雷佳浩, 裴玲秀, 朱然苒, 冯威, 孔清泉. 锐钛矿型银掺杂二氧化钛紫外光及模拟太阳光光催化性能[J]. 材料工程, 2020, 48(2): 59-64.
[10] 李贺希, 陈静飞, 卢聪, 屈秀文, 项丰顺. 光催化降解化学毒剂研究进展[J]. 材料工程, 2020, 48(11): 9-24.
[11] 张钦库, 胡大伟, 闫翻辽, 左安志, 赵强. 米粒状CaIn2O4/In2O3的静电纺丝法制备及其光催化性能[J]. 材料工程, 2020, 48(11): 25-31.
[12] 柏源, 张超智, 孙红旗, 陈斌. 氮、银共掺杂TiO2可见光催化剂的制备及表征[J]. 材料工程, 2020, 48(11): 32-38.
[13] 李涛, 李慧敏, 卢松涛, 吴晓宏. 炭黑/黑色TiO2复合材料的制备及其光催化性能[J]. 材料工程, 2020, 48(11): 39-45.
[14] 熊伟腾, 王云英, 范金娟, 肖淑华. 非定向有机玻璃拉伸断口形貌与拉伸温度相关性分析[J]. 材料工程, 2020, 48(10): 96-104.
[15] 焦华, 赵康, 石蕊, 马利宁, 卞铁荣, 汤玉斐. 羟基磷灰石纳米棒的水热制备及其晶体生长机理研究[J]. 材料工程, 2020, 48(1): 136-143.
Full text



版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持