Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (10): 32-38    DOI: 10.11868/j.issn.1001-4381.2015.001234
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
转速对水下搅拌摩擦焊接7A04-T6铝合金组织与性能的影响
王文, 李天麒, 乔柯, 徐瑞琦, 王快社
西安建筑科技大学 冶金工程学院 材料加工实验室, 西安 710055
Effect of Rotation Rate on Microstructure and Properties of Underwater Friction Stir Welded 7A04-T6 Aluminum Alloy
WANG Wen, LI Tian-qi, QIAO Ke, XU Rui-qi, WANG Kuai-she
Laboratory of Materials Processing, School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
全文: PDF(12771 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 对7A04-T6铝合金板进行水下搅拌摩擦焊接(FSW),研究转速对水下FSW接头组织和力学性能的影响。结果表明:水下FSW接头的硬度最小值均位于热机械影响区。高转速条件下(950r/min)接头的硬度分布呈现"W"形,焊核区平均硬度值高于低转速条件下(475,600,750r/min)接头的硬度值。当焊速恒定为235mm/min,转速从475r/min提高到750r/min时,接头焊核区的析出相随转速的增大逐渐粗化,接头抗拉强度系数从89.71%降低到82.33%;当转速升高到950r/min时,析出相发生固溶时效,呈现细小弥散的分布特征,接头的强度系数提高到89.04%。接头具有较高的应变硬化能力,塑性伸长率较高。水下FSW接头的拉伸断口均呈现微孔聚合和解理混合断裂特征。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王文
李天麒
乔柯
徐瑞琦
王快社
关键词 水下搅拌摩擦焊接7A04铝合金转速组织力学性能    
Abstract:Underwater friction stir welding (FSW) on 7A04-T6 aluminum alloy plates was carried out, and the effect of rotation rate on microstructure and mechanical properties of joints was investigated. The results show that the minimum hardness of underwater FSW joints is located in the thermo-mechanically affected zone. The hardness of welded joints at the high rotation rate of 950r/min exhibits W-shaped distribution, and the average hardness value in the nugget zone is higher than that of welded joints at the low rotation rate of 475, 600, 750r/min. When the rotation rate increases from 475r/min to 750r/min with a constant welding speed of 235mm/min, the precipitated phases in the nugget zone gradually become coarse, and the ultimate tensile strength coefficient of the joint decreases from 89.71% to 82.33%; when rotation rate increases to 950r/min, the precipitated phases dissolve into aluminum matrix during welding, and age after welding. This produces the fine and homogeneous dispersed phases, which results in an increase of the strength coefficient to 89.04% and a certain enhancement of strain hardening capacity and elongation for the joints. All the tensile fracture surfaces exhibit the mixed characteristics of microporous polymerization and cleavage fracture.
Key wordsunderwater friction stir welding    7A04 aluminum alloy    rotation rate    microstructure    mechanical property
收稿日期: 2015-10-14      出版日期: 2017-10-18
中图分类号:  TG457.1  
通讯作者: 王文(1985-),男,工程师,博士研究生,从事搅拌摩擦焊接及加工研究,联系地址:陕西省西安市碑林区雁塔路13号西安建筑科技大学冶金工程学院材料加工实验室(710055),E-mail:wangwen2016@126.com     E-mail: wangwen2016@126.com
引用本文:   
王文, 李天麒, 乔柯, 徐瑞琦, 王快社. 转速对水下搅拌摩擦焊接7A04-T6铝合金组织与性能的影响[J]. 材料工程, 2017, 45(10): 32-38.
WANG Wen, LI Tian-qi, QIAO Ke, XU Rui-qi, WANG Kuai-she. Effect of Rotation Rate on Microstructure and Properties of Underwater Friction Stir Welded 7A04-T6 Aluminum Alloy. Journal of Materials Engineering, 2017, 45(10): 32-38.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.001234      或      http://jme.biam.ac.cn/CN/Y2017/V45/I10/32
[1] MISHRA R S,MA Z Y. Friction stir welding and processing[J]. Materials Science and Engineering:R:Reports,2005,50(1):1-78.
[2] THOMAS W M,NEEDLHAM J C,DAWES C J,et al. Friction stir butt welding:9125978.8[P]. 1991-12-06.
[3] WANG W,WANG K S,GUO Q,et al. Effect of friction stir processing on microstructure and mechanical properties of cast AZ31 magnesium alloy[J]. Rare Metal Materials and Engineering,2012,41(9):1522-1526.
[4] WANG K S,WU J L,WANG W,et al. Underwater friction stir welding of ultrafine grained 2017 aluminum alloy[J]. Journal of Central South University,2012,19(8):2081-2085.
[5] 李继忠,马正斌,董春林,等. 异种铝合金搅拌摩擦焊材料流动行为研究[J]. 材料工程,2014(6):1-4. LI J Z,MA Z B,DONG C L,et al. Material flowing behaviors of friction stir welding by dissimilar aluminum alloys[J]. Journal of Materials Engineering,2014(6):1-4.
[6] 王昌盛,熊江涛,李京龙,等. 2024铝合金搅拌摩擦焊焊缝区疲劳过程中的温度演变[J]. 材料工程,2015,43(9):53-59. WANG C S,XIONG J T,LI J L,et al. Temperature evolution in fatigue test of 2024 aluminum alloy weld fabricated by friction stir welding[J]. Journal of Materials Engineering,2015,43(9):53-59.
[7] GENEVOIS C,DESCHAMPS A,DENQUIN A,et al. Quantitative investigation of precipitation and mechanical behaviour for AA2024 friction stir welds[J]. Acta Materialia,2005,53(8):2447-2458.
[8] SRIVATSAN T S,VASUDEVAN S,PARK L. The tensile deformation and fracture behavior of friction stir welded aluminum alloy 2024[J]. Materials Science and Engineering:A,2007,466(1/2):235-245.
[9] LI J Q,LIU H J. Characteristics of the reverse dual-rotation friction stir welding conducted on 2219-T6 aluminum alloy[J]. Materials & Design,2013,45:148-154.
[10] SHEN Z K,YANG X Q,ZHANG Z H,et al. Microstructure and failure mechanisms of refill friction stir spot welded 7075-T6 aluminum alloy joints[J]. Materials & Design,2013,44:476-486.
[11] BENAVIDES S,LI Y,MURR L E,et al. Low-temperature friction-stir welding of 2024 aluminum[J]. Scripta Materialia,1999,41(8):809-815.
[12] LIU H J,ZHANG H J,YU L. Effect of welding speed on microstructures and mechanical properties of underwater friction stir welded 2219 aluminum alloy[J]. Materials & Design,2011,32(3):1548-1553.
[13] ZHANG H J,LIU H J,YU L. Microstructure and mechanical properties as a function of rotation speed in underwater friction stir welded aluminum alloy joints[J]. Materials & Design,2011,32(8/9):4402-4407.
[14] FRATINI L,BUFFA G,SHIVPURI R. Mechanical and metallurgical effects of in process cooling during friction stir welding of AA7075-T6 butt joints[J]. Acta Materialia,2010,58(6):2056-2067.
[15] LIU H J,ZHANG H J,HUANG Y X,et al. Mechanical properties of underwater friction stir welded 2219 aluminum alloy[J]. Transactions of Nonferrous Metals Society of China,2010,20(8):1387-1391.
[16] 徐瑞琦,王文,郝亚鑫,等. 7A04-T6铝合金水下搅拌摩擦焊接接头的组织和性能[J]. 航空材料学报,2015,35(4):16-21. XU R Q,WANG W,HAO Y X,et al. Microstructure and mechanical properties of underwater friction stir welded 7A04-T6 aluminum alloy[J]. Journal of Aeronautical Materials,2015,35(4):16-21.
[17] ZHANG Z M,YU J M,WANG Q,et al. Effects of multiple plastic deformations on microstructure and mechanical properties of 7A04-T6[J]. Rare Metal Materials and Engineering,2011,40(Suppl 3):69-72.
[18] CHANG C I,DU X H,HUANG J C. Producing nanograined microstructure in Mg-Al-Zn alloy by two-step friction stir processing[J]. Scripta Materialia,2008,59(3):356-359.
[19] DIERINGA H. Properties of magnesium alloys reinforced with nanoparticles and carbon nanotubes:a review[J]. Journal of Materials Science,2011,46(2):289-306.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[3] 张桂源, 李于朋, 宫文彪, 宫明月, 崔恒. Zn对钢/铝异种金属搅拌摩擦焊接头界面组织及性能的影响[J]. 材料工程, 2020, 48(8): 149-156.
[4] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[5] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[6] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[7] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[8] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[9] 赵强, 祝文卉, 邵天巍, 帅焱林, 刘佳涛, 王冉, 张利, 梁晓波. Ti-22Al-25Nb合金惯性摩擦焊接头显微组织与力学性能[J]. 材料工程, 2020, 48(6): 140-147.
[10] 石磊, 雷力明, 王威, 付鑫, 张广平. 热等静压/热处理工艺对激光选区熔化成形GH4169合金微观组织与拉伸性能的影响[J]. 材料工程, 2020, 48(6): 148-155.
[11] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[12] 赵辉, 赵菲, 杨长龙, 韩钰, 靳东, 李红英. 时效处理对Al-Zr-Sc(-Er)合金组织和性能的影响[J]. 材料工程, 2020, 48(5): 112-119.
[13] 王旭青, 彭子超, 罗学军, 马国君, 武丹. 时效制度对挤压+锻造工艺路线FGH95粉末高温合金组织和性能的影响[J]. 材料工程, 2020, 48(5): 120-126.
[14] 易振华, 冉丽萍, 易茂中. Ni-Cr-P焊膏钎焊C/C复合材料的组织和性能[J]. 材料工程, 2020, 48(5): 127-135.
[15] 邓运来, 邓舒浩, 叶凌英, 林森, 孙琳, 吉华. 焊后热处理对AA7204-T4铝合金搅拌摩擦焊接头组织与力学性能的影响[J]. 材料工程, 2020, 48(4): 131-138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn