Please wait a minute...
 
2222材料工程  2017, Vol. 45 Issue (10): 39-46    DOI: 10.11868/j.issn.1001-4381.2016.001045
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
等离子旋转电极雾化法制备高品质Ti-6.5Al-1.4Si-2Zr-0.5Mo-2Sn合金粉末
邝泉波1,2, 邹黎明2,*(), 蔡一湘2, 刘辛2, 程军3, 易健宏1
1 昆明理工大学 材料科学与工程学院, 昆明 650093
2 广东省科学院 广东省材料与加工研究所, 广州 510650
3 西北有色金属研究院 生物材料工程研究所, 西安 710016
Preparation of High Quality Ti-6.5Al-1.4Si-2Zr-0.5Mo-2Sn Alloy Powder by Plasma Rotating Electrode Process
Quan-bo KUANG1,2, Li-ming ZOU2,*(), Yi-xiang CAI2, Xin LIU2, Jun CHENG3, Jian-hong YI1
1 School of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
2 Guangdong Institute of Materials and Processing, Guangdong Academy of Sciences, Guangzhou 510650, China
3 Institute of Biological Materials Engineering, Northwest Institute for Non-Ferrous Metal Research, Xi'an 710016, China
全文: PDF(5739 KB)   HTML ( 26 )  
输出: BibTeX | EndNote (RIS)      
摘要 

旨在制备高品质Ti-6.5Al-1.4Si-2Zr-0.5Mo-2Sn粉末,为后续粉末高温钛合金构件的制备奠定基础。首先采用真空自耗电弧熔炼(VAR)技术制备Ti-6.5Al-1.4Si-2Zr-0.5Mo-2Sn合金铸锭,对铸锭进行化学成分检测,并分析其合金元素损耗、成分均匀性以及显微组织和物相组成。利用制得棒料,采用等离子旋转电极雾化法(PREP),选取不同转速制备得到钛合金粉末,将粉末筛分成不同粒度范围。研究了棒料转速与粉末理化性能间的关系。采用X射线衍射分析仪(XRD)、扫描电镜(SEM)、金相显微镜(OM)分别分析了粉末的物相组成、形貌和微观组织。研究表明:通过独特的压制电极设计,可制得成分均匀、元素损耗小的钛合金铸锭,且各合金元素含量满足国标的要求。铸锭微观组织为层片状结构,基体中存在少量大小不均的Ti5Si3硅化物相。PREP法制得的钛合金粉末呈正态分布,且球形度好,无空心球和卫星球。随着转速增加,小颗粒粉末占比增加,大颗粒粉末占比大幅度降低。粉末颗粒以胞状组织为主,存在少量的枝晶。合金粉末主要由α'马氏体相组成。相比合金铸锭,粉末中各合金元素略有损耗,O元素质量分数小于0.1%,有利于制得高性能的粉末钛合金。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邝泉波
邹黎明
蔡一湘
刘辛
程军
易健宏
关键词 真空自耗电弧熔炼等离子旋转电极雾化法高温钛合金微观组织硅化物    
Abstract

This research aims to prepare high quality powder of Ti-6.5Al-1.4Si-2Zr-0.5Mo-2Sn, which lays foundation for the following preparation of powder high temperature titanium alloy component.Ti-6.5Al-1.4Si-2Zr-0.5Mo-2Sn alloy ingots were prepared by vacuum arc remelting (VAR). The chemical compositions of ingots were examined. The loss of alloy elements, uniformity of composition, phase composition and microstructure of titanium alloy ingots were analyzed. Then powders were prepared by plasma rotating electrode process (PREP) with different rotating speeds. Alloy powders were sieved into different particle sizes. The relationship between rotating speed and physical and chemical properties of powder was studied. X-ray diffraction(XRD), scanning electron microscope(SEM) and metallurgical microscope(OM) were used to investigate the phase composition, morphology and microstructure of the powder. The results show that the composition distribution of titanium alloy ingot prepared by VAR is uniform and the content of alloy elements meets the requirements of national standard, through a unique pressing electrode. Microstructure of the ingot is lamellar structure with small amounts of silicide particles disperse in the matrix. The size distribution of the powders made by PREP method exhibits the normal distribution. The sphericity of the powder is excellent, and no hollow ball and satellite ball exists. With the increase of rotating speed, the proportion of small particles increases dramatically, the proportion of large particles decreases greatly. The phase composition of powder is mainly α' phase, and it is mainly composed of peritectic and small amount of dendrite structures. Compared with the alloy ingot, the elements of the powders have a slight loss, the content of O is less than 0.1%, which is beneficial to obtain high-performance powder titanium alloy.

Key wordsvacuum arc remelting    plasma rotating electrode process    high temperature titanium alloy    microstructure    silicide
收稿日期: 2016-09-05      出版日期: 2017-10-18
中图分类号:  TF123  
基金资助:国家自然科学基金资助项目(51504072);广州市对外科技合作专项(2014J4500024);广东省国际合作专项(2014B050503003);广东省自然科学基金-博士启动专项(2015A030310193);广东省前沿与关键技术创新专项(2015B010122004);广东省科学院创新平台能力提升专项(2016GDASPT-0209);广东省科学院创新平台能力提升专项(2016GDASPT-0102);广州市科创委创新平台建设与共享专项(201509010003);广东省公益研究与能力建设专项(2017A070702019);广州市产学研协同创新专项(201604040006)
通讯作者: 邹黎明     E-mail: leon.zou@163.com
作者简介: 邹黎明(1980-), 男, 工程师, 博士, 研究方向:金属材料制备与成形, 联系地址:广东省广州市天河区长兴路363号广东省材料与加工研究所粉末冶金研究室(510650), E-mail:leon.zou@163.com
引用本文:   
邝泉波, 邹黎明, 蔡一湘, 刘辛, 程军, 易健宏. 等离子旋转电极雾化法制备高品质Ti-6.5Al-1.4Si-2Zr-0.5Mo-2Sn合金粉末[J]. 材料工程, 2017, 45(10): 39-46.
Quan-bo KUANG, Li-ming ZOU, Yi-xiang CAI, Xin LIU, Jun CHENG, Jian-hong YI. Preparation of High Quality Ti-6.5Al-1.4Si-2Zr-0.5Mo-2Sn Alloy Powder by Plasma Rotating Electrode Process. Journal of Materials Engineering, 2017, 45(10): 39-46.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001045      或      http://jme.biam.ac.cn/CN/Y2017/V45/I10/39
Fig.1  钛合金铸锭制备工艺流程
Fig.2  压制电极
(a)海绵钛、Al-Si中间合金和Al-Mo中间合金;(b)海绵锆、Si粉和Al-Mo中间合金;(c)Sn粒
Composition Al Si Zr Mo Sn O
Nominal composition 6.5 1.4 2.0 0.5 2 -
GB 6.0-7.0 1.0-2.0 1.5-2.5 0.4-0.6 1.5-2.5 <0.1
Top 6.46 1.38 2.04 0.55 2.02 0.064
Bottom 6.52 1.47 1.98 0.57 1.98 0.064
Table 1  钛合金铸锭名义成分、国标及上下端合金元素成分(质量分数/%)
Fig.3  合金铸锭显微组织及物相组成
(a)低倍;(b)高倍;(c)物相组成
Fig.4  Ti-Si二元相图[7]
Fig.5  不同转速下制得粉末粒度分布图
(a)12000r/min; (b)18000r/min
Diameter/μm Al Si Zr Mo Sn O
178-250 5.99 1.35 1.72 0.50 1.52 0.052
150-178 6.08 1.41 1.84 0.50 1.60 0.068
44-74 6.23 1.44 1.91 0.68 1.72 0.077
Table 2  粉末合金元素成分(质量分数/%)
Position Ti Al Sn
Edge 86.12 5.11 1.79
Centre 87.89 6.37 2.08
Table 3  粉末颗粒剖面边缘和中心化学成分(质量分数/%)
Fig.6  粉末显微组织形貌及物相组成
(a)低倍;(b)高倍;(c)腐蚀前;(d)腐蚀后;(e)粉末物相组成
1 黄旭, 李臻熙, 黄浩. 高推重比航空发动机用新型高温钛合金研究进展[J]. 中国材料进展, 2011, 30 (6): 21- 27.
1 HUANG X , LI Z X , HUANG H . Recent development of new high-temperature titanium alloys for high thrust-weight ratio aero-engines[J]. China Material Progress, 2011, 30 (6): 21- 27.
2 蔡建明, 弭光宝, 高帆, 等. 航空发动机用先进高温钛合金材料技术研究与发展[J]. 材料工程, 2016, 44 (8): 1- 10.
doi: 10.11868/j.issn.1001-4381.2016.08.001
2 CAI J M , MI G B , GAO F , et al. Research and development of some advanced high temperature titanium alloys for aero-engine[J]. Journal of Materials Engineering, 2016, 44 (8): 1- 10.
doi: 10.11868/j.issn.1001-4381.2016.08.001
3 GRUMGRZHIMAILO N V , KORNILOV Ⅱ , PYLAEVA E N , et al. Intermetallic compounds in an alpha solid solution of titanium and aluminum[J]. Metal Chemistry and New Alloys, 1961, 137 (7): 74- 77.
4 KUZ'MENKO M M . Structure and mechanical properties of cast alloys of the Ti-Si system[J]. Materials Science, 2008, 44 (1): 49- 53.
doi: 10.1007/s11003-008-9042-x
5 RAGHAVAN V . Ti-Si-Al (aluminum-silicon-titanium)[J]. Journal of Phase Equilibria and Diffusion, 2005, 26 (6): 624- 628.
doi: 10.1007/s11669-005-0010-y
6 董飞, 何国强, 张贵田. 合金元素Si在钛合金中作用的研究进展[J]. 金属热处理, 2007, 32 (11): 5- 10.
doi: 10.3969/j.issn.0254-6051.2007.11.002
6 DONG F , HE G Q , ZHANG G T . Research development of the effect of Si element on titanium alloy[J]. Metal Heat Treatment, 2007, 32 (11): 5- 10.
doi: 10.3969/j.issn.0254-6051.2007.11.002
7 王清江, 刘建荣, 杨锐. 高温钛合金的现状与前景[J]. 航空材料学报, 2014, 34 (4): 1- 2.
doi: 10.11868/j.issn.1005-5053.2014.4.001
7 WANG Q J , LIU J R , YANG R . High temperature titanium alloys status and perspective[J]. Journal of Aeronautical Materials, 2014, 34 (4): 1- 2.
doi: 10.11868/j.issn.1005-5053.2014.4.001
8 FIRSTOV S A , TKACHENKO S V , KUZ'MENKO N N . Titanium "irons" and titanium "steels"[J]. Metal Science and Heat Treatment, 2009, 51 (1): 12- 18.
9 SAHA R L , NANDY T K , MISRA R D K , et al. Microstructural changes induced by ternary addition in a hypothetic titanium-siliconalloy[J]. Journal of Materials Science, 1991, 26 (10): 2637- 2644.
doi: 10.1007/BF02387731
10 汤慧萍, 黄伯云, 刘咏, 等. 粉末冶金钛合金致密化研究的进展[J]. 稀有金属材料与工程, 2003, 32 (9): 677- 680.
10 TANG H P , HUANG B Y , LIU Y , et al. Progress in the densification of powder metallurgical titanium alloys[J]. Rare Metal Materials and Engineering, 2003, 32 (9): 677- 680.
11 肖代红, 袁铁锤, 贺跃辉, 等. 粉末冶金钛合金的制备与力学性能[J]. 中国有色金属学报, 2010, 20 (1): 303- 308.
11 XIAO D H , YUAN T C , HE Y H , et al. Synthesis and mechanical properties of powder metallurgy titanium alloy[J]. The Chinese Journal of Nonferrous Metals, 2010, 20 (1): 303- 308.
12 蔡一湘, 李达人. 粉末冶金钛合金的应用现状[J]. 中国材料进展, 2010, 29 (5): 31- 38.
12 CAI Y X , LI D R . Application of titanium alloys prepared by powder metallurgy[J]. Materials China, 2010, 29 (5): 31- 38.
13 邹黎明, 谢焕文, 刘辛, 等. 钛及钛合金粉末制备技术的研究及应用现状[J]. 材料研究与应用, 2015, 9 (4): 222- 225.
13 ZOU L M , XIE H W , LIU X , et al. Research and application progress for preparation of Ti and its alloy powder[J]. Materials Research and Application, 2015, 9 (4): 222- 225.
14 王琪, 李圣刚, 吕宏军, 等. 雾化法制备高品质钛合金粉末技术研究[J]. 钛工业进展, 2010, 27 (5): 16- 18.
14 WANG Q , LI S G , LV H J , et al. Research on high quality titanium alloy powder production by atomization technology[J]. Titanium Industry Progress, 2010, 27 (5): 16- 18.
15 尚青亮, 刘婕, 方树铭, 等. 金属钛粉的制备工艺[J]. 材料导报, 2013, 27 (21): 97- 100.
15 SHANG Q L , LIU J , FANG S M , et al. The preparation technology of titanium metal powder[J]. Materials Review, 2013, 27 (21): 97- 100.
16 杨鑫, 奚正平, 刘永, 等. 等离子旋转电极法制备钛铝粉末性能表征[J]. 稀有金属材料与工程, 2010, 39 (12): 2251- 2254.
16 YANG X , XI Z P , LIU Y , et al. Characterization of TiAl powders prepared by plasma rotating electrode processing[J]. Rare Metal Materials and Engineering, 2010, 39 (12): 2251- 2254.
17 BOYER R R . An overview on the use of titanium in the aerospace industry[J]. Mater Sci Eng:A, 1996, 213, 103.
doi: 10.1016/0921-5093(96)10233-1
18 LEYENS C, PETERS M. 钛及钛合金[M]. 陈振华, 译. 北京: 化学工业出版社, 2005: 205-210.
19 FIRSTOV S , GORNAYA I , GORPENKO K , et al. Influence of zirconium on phase composition, structure, and mechanical properties of as-cast alloys of Ti-Al-Si system[J]. High Temperature Materials and Processes, 2006, 25 (1): 59- 66.
20 AZEVEDO C R D F , FLOWER H M . Microstructure and phase relationships in Ti-Al-Si system[J]. Materials Science and Technology, 1999, 15 (8): 869- 877.
doi: 10.1179/026708399101506661
21 ANTONOVA N , FIRSTOV S , MIRACLE D B . Investigation of phase equilibria in the Ti-Al-Si-Nb system at low Nb contents[J]. Acta Mater, 2003, 51 (11): 3095- 3107.
doi: 10.1016/S1359-6454(03)00121-6
22 张义文, 张莹, 陈生大. PREP制取高温合金粉末的特点[J]. 粉末冶金技术, 2001, 19 (1): 12- 15.
22 ZHANG Y W , ZHANG Y , CHEN S D . Characteristics of PREP in preparing superalloy powder[J]. Powder Metallurgy Technology, 2001, 19 (1): 12- 15.
23 陶宇, 冯涤, 张义文, 等. PREP工艺参数对FGH95高温合金粉末特性的影响[J]. 钢铁研究学报, 2003, 15 (5): 46- 50.
23 TAO Y , FENG D , ZHANG Y W , et al. Effect of PREP process parameters on powder properties for FGH95 superalloy[J]. Journal of Iron and Steel Research, 2003, 15 (5): 46- 50.
24 赵张龙, 郭鸿镇, 姚泽坤, 等. TC17粉末钛合金HIP/IF复合工艺制备及其组织性能演变[J]. 稀有金属材料与工程, 2009, 38 (8): 1450- 1453.
24 ZHAO Z L , GUO H Z , YAO Z K , et al. Preparation and microstructure as well as property of TC17 powder alloy by HIP/IF process[J]. Rare Metal Materials and Engineering, 2009, 38 (8): 1450- 1453.
25 WOSCH E , FELDHAUSS , GAMMAL T E . Rapid solidification of steel droplets in the plasma-rotating-electrode-process[J]. ISIJ International, 1995, 35 (6): 764- 770.
doi: 10.2355/isijinternational.35.764
26 王少卿, 于化顺, 王海涛, 等. 气体雾化Al-Zn-Mg-Cu铝合金粉末的形貌及组织性能研究[J]. 粉末冶金技术, 2010, 28 (1): 12- 16.
26 WANG S Q , YU H S , WANG H T , et al. Microstructure and mechanical properties of Al-Zn-Mg-Cu alloy powders prepared by gas atomization process[J]. Powder Metallurgy Technology, 2010, 28 (1): 12- 16.
27 陈士仁, 吴冲浒, 张守全. WC粉末X射线衍射的粒度效应[J]. 中国有色金属学报, 2002, 12 (3): 442- 447.
27 CHEN S R , WU C H , ZHANG S Q . XRD effect of WC powder particle size[J]. The Chinese Journal of Nonferrous Metals, 2002, 12 (3): 442- 447.
[1] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[2] 朱阳阳, 李晓延, 张伟栋, 张虎, 何溪. 全Cu3Sn焊点在高温时效下的组织及力学性能[J]. 材料工程, 2022, 50(9): 169-176.
[3] 张昌青, 王树文, 罗德春, 师文辰, 刘晓, 崔国胜, 陈波阳, 辛舟, 芮执元. 热电耦合对铝/钢连续驱动摩擦焊接头组织的影响机理[J]. 材料工程, 2022, 50(5): 35-42.
[4] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[5] 安强, 祁文军, 左小刚. TA15钛合金表面原位合成TiC增强钛基激光熔覆层的组织与耐磨性[J]. 材料工程, 2022, 50(4): 139-146.
[6] 孙琦迪, 杨蔚涛, 郝庆国, 关肖虎, 章斌, 杨旗. 低周疲劳变形过程中Fe-33Mn-4Si合金钢的微观组织演变[J]. 材料工程, 2022, 50(4): 162-171.
[7] 计植耀, 马跃, 王清, 董闯. 高性能软磁合金的研究进展[J]. 材料工程, 2022, 50(3): 69-80.
[8] 余晖, 任军超, 杨鑫, 郭舒龙, 余炜, 冯建航, 殷福星, 辛光善. Zn层添加AZ31/7075合金复合成形工艺及组织与性能研究[J]. 材料工程, 2022, 50(3): 157-165.
[9] 陈维平, 陈焕达, 褚晨亮, 付志强. 粉末冶金(FeNiMnAlx)50Cu50中熵合金的微观组织与力学性能[J]. 材料工程, 2022, 50(10): 55-62.
[10] 邵震, 崔雷, 王东坡, 陈永亮, 胡正根, 王非凡. 几何参数对2219铝合金拉拔式摩擦塞补焊接头微观组织及力学性能的影响[J]. 材料工程, 2022, 50(1): 25-32.
[11] 李安庆, 张立华, 蒋日鹏, 李晓谦, 张昀. 冷却速度及超声振动协同作用对7085铝合金凝固组织及力学性能的影响[J]. 材料工程, 2021, 49(8): 63-71.
[12] 谷籽旺, 郭文敏, 张弘鳞, 李文娟. 基于核壳结构粉体设计的CoNiCrAlY-Al2O3复合涂层组织结构及其抗氧化性能[J]. 材料工程, 2021, 49(7): 112-123.
[13] 于娟, 陆政, 鲁原, 熊艳才, 李国爱, 冯朝辉, 郝时嘉. 中间形变热处理对2A97铝锂合金组织和性能的影响[J]. 材料工程, 2021, 49(5): 130-136.
[14] 武永丽, 熊毅, 陈正阁, 查小琴, 岳赟, 刘玉亮, 张金民, 任凤章. 超音速微粒轰击对TC11钛合金组织和疲劳性能的影响[J]. 材料工程, 2021, 49(5): 137-143.
[15] 臧金鑫, 邢清源, 陈军洲, 戴圣龙. 800 MPa级超高强度铝合金的时效析出行为[J]. 材料工程, 2021, 49(4): 71-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn