Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (10): 79-87    DOI: 10.11868/j.issn.1001-4381.2016.000713
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
燃气热循环下7YSZ热障涂层的微结构演变与阻抗谱特征
陈文龙1,2, 刘敏2,3,4, 张吉阜2,3,4, 宋进兵2,3,4
1 广东工业大学 材料与能源学院, 广州 510006;
2 广东省新材料研究所, 广州 510650;
3 现代材料表面工程技术国家工程实验室, 广州 510650;
4 广东省现代表面工程技术重点实验室, 广州 510650
Microstructure Evolution and Impedance Spectroscopy Characterization of Thermal Barrier Coating Exposed to Gas Thermal-shock Environment
CHEN Wen-long1,2, LIU Min2,3,4, ZHANG Ji-fu2,3,4, SONG Jin-bing2,3,4
1 School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China;
2 Guangdong Institute of New Materials, Guangzhou 510650, China;
3 National Engineering Laboratory for Modern Materials Surface Engineering Technology, Guangzhou 510650, China;
4 Key Laboratory of Guangdong for Modern Surface Engineering Technology, Guangzhou 510650, China
全文: PDF(17919 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 在1250℃燃气热循环条件下,测试热障涂层抗冷热冲击性能,以模拟发动机叶片的启动升温与关闭降温循环过程。采用电化学阻抗谱测试和扫描电镜(SEM)系统研究热循环过程中热生长氧化物(TGO)生长与YSZ陶瓷层微结构演变。结果表明:随着热循环次数增加,热障涂层内TGO不断生长变厚,在中频阶段的阻抗谱响应越来越显著。YSZ陶瓷层内部经历了微裂纹的萌生与扩展两个阶段。经过100次热循环后的YSZ层表现出与喷涂态涂层相似的阻抗特征,表明高温下烧结会使YSZ层产生的微裂纹在短时间内愈合。但经过300次热循环后的YSZ层表现出与喷涂态完全不同的阻抗谱,并随热循环次数增加,YSZ颗粒间隙阻抗值不断增加,表明YSZ内层产生了不可愈合的微裂纹,是导致YSZ层最终失效的主要因素。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈文龙
刘敏
张吉阜
宋进兵
关键词 热障涂层燃气热冲击电化学阻抗谱结构演变    
Abstract:Gas thermal-shock experiment of thermal barrier coatings (TBCs) was carried out in air up to 1250℃ in order to simulate the thermal cycling process of the engine blades during the start heating and shut down cooling. The growth of thermal growth oxide (TGO) layer and microstructure evolution of YSZ layer during thermal cycling process were investigated systematically by electrochemical impedance spectroscopy testing and SEM. The results show that the thickness of TGO layer increases when increasing the frequency of thermal cycling, and the impedance response of middle frequencies is more and more remarkable. Meanwhile, initiation and growth of micro-cracks occur in YSZ layer during the gas thermal-shock experiment. The corresponding impedance characterization of YSZ layer after 100 cycles is similar to the as-sprayed sample, indicating that micro-cracks in short time could heal since the YSZ micro-cracks sinter at high temperature. But after 300 cycles, the impedance spectroscopy of YSZ layer is quite different to the as-sprayed sample, with the corresponding impedance of particle-gap of YSZ more and more remarkable with the increase of the thermal-shock times, indicating that non-healing micro-cracks form in the YSZ layer, which may be the main reason to induce the failure of YSZ layer.
Key wordsthermal barrier coating    gas thermal-shock    impedance spectroscopy    structure evolution
收稿日期: 2016-06-13      出版日期: 2017-10-18
中图分类号:  TQ174  
通讯作者: 刘敏(1965-),男,硕士,教授,研究方向:材料表面工程,联系地址:广东省广州市天河区长兴路363号广东省新材料研究所(510650),E-mail:liumin_gz@163.net     E-mail: liumin_gz@163.net
引用本文:   
陈文龙, 刘敏, 张吉阜, 宋进兵. 燃气热循环下7YSZ热障涂层的微结构演变与阻抗谱特征[J]. 材料工程, 2017, 45(10): 79-87.
CHEN Wen-long, LIU Min, ZHANG Ji-fu, SONG Jin-bing. Microstructure Evolution and Impedance Spectroscopy Characterization of Thermal Barrier Coating Exposed to Gas Thermal-shock Environment. Journal of Materials Engineering, 2017, 45(10): 79-87.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000713      或      http://jme.biam.ac.cn/CN/Y2017/V45/I10/79
[1] 黄旭,李臻熙,黄浩.高推重比航空发动机用新型高温钛合金研究进展[J].中国材料进展,2011,30(6):21-27. HUANG X,LI Z X,HUANG H. Recent development of new high-temperature titanium alloys for high thrust-weight ratio aero-engines[J].Materials China,2011,30(6):21-27.
[2] 郑蕾,郭洪波,郭磊,等.新一代超高温热障涂层研究[J].航空材料学报,2012,32(6):14-24. ZHENG L,GUO H B,GUO L,et al. New generation thermal barrier coatings for ultrahigh temperature applications[J].Journal of Aeronautical Materials,2012,32(6):14-24.
[3] 冯强,童锦艳,郑运荣,等.燃气涡轮叶片的服役损伤与修复[J].中国材料进展,2012,31(12):21-34. FENG Q,TONG J Y,ZHENG Y R,et al. Service induced degradation and rejuvenation of gas turbine blades[J].Materials China,2012,31(12):21-34.
[4] NI L Y,LIU C,ZHOU C G.A life prediction model of thermal barrier coatings[J].International Journal of Modern Physics B,2010,24(15/16):3161-3166.
[5] 齐红宇,马立强,李少林,等.等离子热障涂层构件高温热疲劳寿命预测研究[J].材料工程,2014(7):67-72. QI H Y,MA L Q,LI S L,et al. High temperature thermal fatigue life prediction of plasma sprayed thermal barrier coatings structure[J].Journal of Materials Engineering,2014(7):67-72.
[6] SHEN W,WANG F C,FAN Q B. Lifetime prediction of plasma-sprayed thermal barrier coating systems[J].Surface & Coatings Technology,2013,217:39-45.
[7] 刘颖韬,牟仁德,郭广平,等.热障涂层闪光灯激励红外热像检测[J].航空材料学报,2015,35(6):83-90. LIU Y T,MU R D,GUO G P,et al. Infrared flash thermographic nondestructive testing of defects in thermal barrier coating[J].Journal of Aeronautical Materials,2015,35(6):83-90.
[8] SCHWARZER J,LOHE D,VOHRINGER O. Influence of the TGO creep behavior on delamination stress development in thermal barrier coating systems[J].Materials Science and Engineering:A,2004,387/389:692-695.
[9] 张春霞,宫声凯,徐惠彬.交流阻抗谱法在热障涂层失效研究中的应用[J].航空学报,2006,27(3):520-524. ZHANG C X,GONG S K,XU H B. Failure evaluation of thermal barrier coatings by impedance spectroscopy[J].Acta Aeronautica et Astronautica Sinica,2006, 27(3):520-524.
[10] ALI M S,SONG S H,XIAO P.Evaluation of degradation of thermal barrier coatings using impedance spectroscopy[J].Journal of the European Ceramic Society,2002,22(1):101-107.
[11] SONG S H,XIAO P. An impedance spectroscopy study of high-temperature oxidation of thermal barrier coatings[J].Materials Science and Engineering:B,2003,97(1):46-53.
[12] WANG X,MEI J F,XIAO P. Non-destructive evaluation of thermal barrier coatings using impedance spectroscopy[J].Journal of the European Ceramic Society,2001,21(7):855-859.
[13] ZHANG D H,GUO H B,GONG S K. Impedance spectroscopy study of high-temperature oxidation of Gd2O3-Yb2O3 codoped zirconia thermal barrier coatings[J].Transactions of Nonferrous Metals Society of China,2011,21(5):1061-1067.
[14] SONG S H,XIAO P,WENG L Q. Evaluation of microstructural evolution in thermal barrier coatings during thermal cycling using impedance spectroscopy[J].Journal of the European Ceramic Society,2005,25(7):1167-1173.
[15] LIU C,HUANG H,NI L Y,et al. Evaluation of thermal barrier coatings exposed to hot corrosion environment by impedance spectroscopy[J].Chinese Journal of Aeronautics,2011,24(4):514-519.
[16] WU J,GUO H B,ABBAS M,et al. Evaluation of plasma sprayed YSZ thermal barrier coatings with the CMAS deposits infiltration using impedance spectroscopy[J].Progress in Natural Science:Materials International,2012,22(1):40-47.
[17] 曹学强.热障涂层材料[M].北京:科学出版社,2007:22-30. CAO X Q. Materials of thermal barrier coating[M]. Beijing:Science Press,2007:22-30.
[18] 曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002:151-162. CAO C N,ZHANG J Q. Introduction to electrochemical impedance spectroscopy[M].Beijing:Science Press,2002:151-162.
[19] ANDERSON P S,WANG X,XIAO P. Impedance spectroscopy study of plasma sprayed and EB-PVD thermal barrier coatings[J]. Surface & Coatings Technology,2004,185(1):106-119.
[20] ZHANG C X,ZHOU C G,GONG S K,et al. Evaluation of thermal barrier coating exposed to different oxygen partial pressure environments by impedance spectroscopy[J]. Surface & Coatings Technology,2006,201(1/2):446-551.
[21] LIU T,LUO X T,CHEN X,et al. Morphology and size evolution of interlamellar two-dimensional pores in plasma-sprayed La2Zr2O7 coatings during thermal exposure at 1300℃[J].Journal of Thermal Spray Technology,2015,24(5):739-748.
[22] 王从曾,刘会亭.材料性能学[M].北京:北京工业大学出版社,2011:106-109. WANG C Z,LIU H T. Properties of materials[M].Beijing:Beijing University of Technology Press,2011:106-109.
[23] 张小锋,周克崧,宋进兵,等.等离子喷涂-物理气相沉积7YSZ热障涂层沉积机理及其CMAS腐蚀失效机制[J].无机材料学报,2015,30(3):287-293. ZHANG X F,ZHOU K S,SONG J B,et al. Deposition and CMAS corrosion mechanism of 7YSZ thermal barrier coatings prepared by plasma spray-physical vapor deposition[J].Journal of Inorganic Materials,2015,30(3):287-293.
[1] 袁佟, 邓畅光, 毛杰, 邓春明, 邓子谦. 等离子喷涂-物理气相沉积制备7YSZ热障涂层及其热导率研究[J]. 材料工程, 2017, 45(7): 1-6.
[2] 王逸群, 宋鹏, 季强, 廖红星, 陆建生. H2O和Y(O)对NiCoCrAl热障涂层高温氧化的影响[J]. 材料工程, 2017, 45(4): 65-69.
[3] 黄亮亮, 孟惠民, 唐静. 纳米结构热障涂层研究进展[J]. 材料工程, 2014, 0(8): 105-114.
[4] 陈海燕, 林振龙, 陈丕茂, 秦传新, 唐振朝, 余景. 紫铜在海洋微生物作用下的电化学腐蚀行为[J]. 材料工程, 2014, 0(7): 22-27.
[5] 齐红宇, 马立强, 李少林, 杨晓光, 王亚梅, 魏洪亮. 等离子热障涂层构件高温热疲劳寿命预测研究[J]. 材料工程, 2014, 0(7): 67-72.
[6] 董建民, 李嘉荣, 牟仁德, 赵金乾, 史振学, 刘世忠. 高温热处理对带热障涂层DD6单晶高温合金互扩散行为及持久断裂特征的影响[J]. 材料工程, 2014, 0(6): 51-55.
[7] 杜楠, 叶超, 田文明, 赵晴. 304不锈钢点蚀行为的电化学阻抗谱研究[J]. 材料工程, 2014, 0(6): 68-73.
[8] 骆晨, 蔡健平, 陈亚争, 刘明, 赵亮亮, 孙志华, 汤智慧, 陆峰. 外加应变对航空有机涂层防护性能的影响[J]. 材料工程, 2014, 0(5): 1-6.
[9] 马志远, 罗忠兵, 林莉. 基于RVM表征热障涂层孔隙率与孔隙形貌对超声纵波声速的影响[J]. 材料工程, 2014, 0(5): 86-90.
[10] 何箐, 屈轶, 汪瑞军, 王伟平. DZ40M合金表面纳米和垂直裂纹结构热障涂层的抗燃气热腐蚀性能[J]. 材料工程, 2014, 0(5): 66-72.
[11] 何箐, 吴鹏, 屈轶, 汪瑞军, 王伟平. 一种新型CMAS耦合条件下热障涂层热循环实验方法[J]. 材料工程, 2014, 0(12): 92-98.
[12] 周轶群, 佟文伟, 刘芳, 张开阔. 热障涂层对K417G合金高温低周疲劳行为的影响[J]. 材料工程, 2014, 0(1): 19-23.
[13] 黄亮亮, 孟惠民, 陈龙. 磁铅石结构六铝酸盐热障涂层的研究现状[J]. 材料工程, 2013, 0(12): 92-99.
[14] 宋秀霞, 张杰, 杨东方, 段继周. 海水微生物对Zn-Al-Cd牺牲阳极腐蚀性能的影响[J]. 材料工程, 2013, 0(1): 58-63.
[15] 蔡妍, 易军, 陆峰, 陶春虎. 热障涂层金属元素扩散阻挡层研究进展[J]. 材料工程, 2011, 0(9): 92-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn