Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (10): 95-102    DOI: 10.11868/j.issn.1001-4381.2016.000170
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
航空紧固件用Ti-5553合金的组织和性能
赵庆云1, 由洋2, 王立东1, 董利民3, 刘风雷1
1 中航工业北京航空制造工程研究所 机械连接技术研究室, 北京 100024;
2 中航工业北京航空制造工程研究所 理化检测中心, 北京 100024;
3 中国科学院 金属研究所, 沈阳 110016
Microstructure and Properties of Ti-5553 Alloy for Aerospace Fasteners
ZHAO Qing-yun1, YOU Yang2, WANG Li-dong1, DONG Li-min3, LIU Feng-lei1
1 Department of Mechanical Joining, AVIC Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024, China;
2 Testing Center, AVIC Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024, China;
3 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(19496 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用扫描电镜和透射电子显微镜研究不同热处理制度对Ti-5553高强钛合金显微组织与力学性能的影响。结果表明:在(α+β)两相区进行固溶处理时,随着固溶温度的升高,Ti-5553合金组织中的初生α相含量逐渐减少,β相的尺寸和体积分数均增加,合金强度逐渐降低。时效后β基体发生转变,晶界和晶内析出大量次生α相。次生α相的尺寸对力学性能产生重要影响,随着时效温度的升高,次生α相逐渐粗化,导致抗拉强度逐渐下降。1240MPa级航空紧固件用Ti-5553的固溶温度应选择Tβ以下,使组织中留有足够的β相,从而时效时在β相中有大量次生α相析出,获得需要的高强度。同时,保留一定含量的初生α相,以便获得良好的塑韧性。经810~820℃,1.5h,水淬+510℃,10h,空冷热处理后,合金可以获得较好的综合性能,抗拉强度达1500MPa,伸长率达14.8%,断面收缩率为38.6%。固溶和时效态的拉伸断口均存在大量韧窝,材料具有良好的塑韧性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵庆云
由洋
王立东
董利民
刘风雷
关键词 高强钛合金紧固件Ti-5553显微组织力学性能    
Abstract:The effect of heat treatment on microstructure and mechanical properties of Ti-5553 alloy was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that when the alloy is treated in α+β phase zone, tensile strength decreases with raising solution temperature due to decreasing the content of primary α-phase and increasing the size and volume fraction of β phase. A lot of secondary α-phase precipitates from grain boundary and intragranular with β phase transformation during aging treatment. The size of secondary α-phase has significant influence on tensile strength, secondary α-phase coarsens gradually with the increase of aging temperature, resulting in the decrease of tensile strength. It is suggested that for 1240MPa aerospace fasteners the solution temperature of Ti-5553 should be under Tβ, thus adequate β phase, where a lot of secondary α phase precipitates from, is good for the required high strength. Meanwhile, a certain percentage of primary α-phase is kept for acquiring good ductility and toughness. After solution treatment at 810-820℃ for 1.5h, water quenching plus aging at 510℃ for 10h, Ti-5553 shows a better mechanical property with tensile strength 1500MPa, elongation 14.8% and reduction of cross-section area 38.6%. Lots of dimples can be found in tensile fracture after solution treatment and solution+aging treatment, which demonstrate Ti-5553 with good ductility and toughness.
Key wordshigh-strength titanium alloy    fastener    Ti-5553    microstructure    mechanical property
收稿日期: 2016-02-03      出版日期: 2017-10-18
中图分类号:  TG146.2+3  
通讯作者: 赵庆云(1969-),女,硕士,研究员,主要从事航空紧固件的开发和长寿命机械连接技术研究工作,联系地址:北京市340信箱109室(100024),E-mail:zhaoqybj@163.com     E-mail: zhaoqybj@163.com
引用本文:   
赵庆云, 由洋, 王立东, 董利民, 刘风雷. 航空紧固件用Ti-5553合金的组织和性能[J]. 材料工程, 2017, 45(10): 95-102.
ZHAO Qing-yun, YOU Yang, WANG Li-dong, DONG Li-min, LIU Feng-lei. Microstructure and Properties of Ti-5553 Alloy for Aerospace Fasteners. Journal of Materials Engineering, 2017, 45(10): 95-102.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000170      或      http://jme.biam.ac.cn/CN/Y2017/V45/I10/95
[1] 朱知寿. 我国航空用钛合金技术研究现状及发展[J]. 航空材料学报, 2014, 34(4):44-50. ZHU Z S. Recent research and development of titanium alloys for aviation application in China[J]. Journal of Aeronautical Materials, 2014, 34(4):44-50.
[2] 赵永庆, 葛鹏. 我国自主研发钛合金现状与进展[J]. 航空材料学报, 2014, 34(4):51-61. ZHAO Y Q, GE P. Current situation and development of new titanium alloys invented in China[J]. Journal of Aeronautical Materials, 2014, 34(4):51-61.
[3] 蔡建明, 弭光宝, 高帆, 等. 航空发动机用先进高温钛合金材料技术研究与发展[J]. 材料工程, 2016, 44(8):1-10. CAI J M, MI G B, GAO F, et al. Research and development of some advanced high temperature titanium alloys for aero-engine[J]. Journal of Materials Engineering, 2016, 44(8):1-10.
[4] FANNING J, ZENG L, NYAKANA S. Properties and microstructure of Ti-555 for fasteners[C]//Ti-2007 Science and Technology. Kyoto:The Japan Institute of Metals, 2007:1263-1266.
[5] JONES N G, DASHWOOD R J, JACKSON M, et al. β phase decomposition in Ti-5Al-5Mo-5V-3Cr[J]. Acta Materialia, 2009, 57(4):3830-3839.
[6] GERDAY A F, BETTAIEB M B, DUCHENE L, et al. Interests and limitations of nanoindentation for bulk multiphase material identification:application to the β phase of Ti-5553[J]. Acta Materialia, 2009, 57(7):5186-5195.
[7] JONES N G, DASHWOOD R J, DYE D, et al. The flow behavior and microstructural evolution of Ti-5Al-5Mo-5V-3Cr during subtransus isothermal forging[J]. Metallurgical and Materials Transactions A, 2009, 40(8):1944-1954.
[8] VEECK S, LEE D, BOYER R, et al. The castability of Ti-5553 alloy[J]. Advanced Materials & Processes, 2004, 10:47-49.
[9] FANNING J C. Properties of TIMETAL555(Ti-5Al-5Mo-5V-3Cr-0.6Fe)[J]. Journal of Materials Engineering and Performance, 2005, 14(6):788-791.
[10] 崔雪飞, 米绪军, 惠松骁, 等. Cr含量对Ti5Mo5V3Al-xCr系合金组织及性能的影响[J]. 航空材料学报, 2015, 35(3):35-42. CUI X F, MI X J, HUI S X, et al. Effects of Cr content on microstructure and mechanical properties of Ti5Mo5V3Al-xCr alloys[J]. Journal of Aeronautical Materials, 2015, 35(3):35-42.
[11] 贾亮, 汤慧萍, 石英, 等. Ti-5553合金车削加工性能研究[J]. 钛工业进展, 2014, 31(4):100-103. JIA L, TANG H P, SHI Y, et al. Study on turning performance of Ti5553 alloy[J]. Titanium Industry Progress, 2014, 31(4):100-103.
[12] 周伟, 葛鹏, 赵永庆, 等. Ti-5553合金高温变形时动态再结晶行为[J]. 稀有金属材料与工程, 2012,41(8):1381-1384. ZHOU W, GE P, ZHAO Y Q, et al. The dynamic recrystallization behavior of Ti-5553 titanium alloy during hot deformation[J]. Rare Metal Materials and Engineering, 2012, 41(8):1381-1384.
[13] 王斌, 张凯锋, 蒋少松, 等. 固溶温度对Ti2AlNb基合金组织演变的影响[J]. 航空材料学报, 2015, 35(3):7-12. WANG B, ZHANG K F, JIANG S S, et al. Effect of solution treatment temperature on microstructural evolution of Ti2AlNb-based alloy[J]. Journal of Aeronautical Materials, 2015, 35(3):7-12.
[14] 赵永庆, 陈永楠, 张学敏, 等. 钛合金相变及热处理[M]. 长沙:中南大学出版社, 2012:147. ZHAO Y Q, CHEN Y N, ZHANG X M, et al. Phase transformation and heat treatment of titanium alloys[M]. Changsha:Central South University Press, 2012:147.
[15] WELK B A, FRASER H L, WILLIAMS J C. Microstructural and property relationships in β-titanium alloy Ti-5553[D]. Columbus:The Ohio State University, 2010.
[16] PANZA-GIOSA R, WANG Z, EMBURY D. A study of the microstructural and property in Ti-5Al-5Mo-5V-3Cr-0.5Fe β-titanium alloy[D]. Hamilton:McMaster University & University of Toronto, 2009.
[17] NAG S, BANERJEE R, SRINIVASAN R, et al. ω-assisted nucleation and growth of α precipitates in the Ti-5Al-5Mo-5V-3Cr-0.5Fe β titanium alloy[J]. Acta Materialia, 2009, 57(1):2136-2147.
[18] JONES N G, DASHWOOD R J, JACKSON M, et al. Development of chevron-shaped α precipitates in Ti-5Al-5Mo-5V-3Cr[J]. Scripta Materialia, 2009, 60(7):571-573.
[1] 杨旭东, 安涛, 邹田春, 巩天琛. 湿热环境对碳纤维增强树脂基复合材料力学性能的影响及其损伤机理[J]. 材料工程, 2019, 47(7): 84-91.
[2] 王聃, 陶德华, 黄秀玲, 华子恺. 聚甲基丙稀酸羟乙酯甘油凝胶仿软骨材料的制备与性能[J]. 材料工程, 2019, 47(7): 71-75.
[3] 陈海龙, 杨学锋, 王守仁, 鹿重阳, 吴元博. 改性酚醛树脂陶瓷摩擦材料的摩擦磨损性能[J]. 材料工程, 2019, 47(6): 108-113.
[4] 刘文祎, 徐聪, 刘茂文, 肖文龙, 马朝利. 稀土元素Gd对Al-Si-Mg铸造合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(6): 129-135.
[5] 王飞云, 金建军, 江志华, 王晓震, 胡春文. 热处理温度对新型马氏体时效不锈钢微观组织和性能的影响[J]. 材料工程, 2019, 47(6): 152-160.
[6] 闫钊鸣, 张治民, 杜玥, 张冠世, 任璐英. 均匀化处理对Mg-13Gd-3.5Y-2Zn-0.5Zr镁合金组织和力学性能的影响[J]. 材料工程, 2019, 47(5): 93-99.
[7] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
[8] 李惠, 肖文龙, 张艺镡, 马朝利. 多重结构Ti-B4C/Al2024复合材料的组织和力学性能[J]. 材料工程, 2019, 47(4): 152-159.
[9] 崔岩, 项俊帆, 曹雷刚, 杨越, 刘园. 碳化硅颗粒表面吸附质对铝基复合材料制备及力学性能的影响[J]. 材料工程, 2019, 47(4): 160-166.
[10] 李亚锋, 礼嵩明, 黑艳伟, 邢丽英, 陈祥宝. 太阳辐照对芳纶纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(4): 39-46.
[11] 赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙. 石墨烯纳米片增强铝基复合材料的动态力学行为[J]. 材料工程, 2019, 47(3): 23-29.
[12] 宋仁国. 微弧氧化技术的发展及其应用[J]. 材料工程, 2019, 47(3): 50-62.
[13] 赵云松, 郭媛媛, 赵敬轩, 张晓铁, 刘砚飞, 杨岩, 姜华, 张剑, 骆宇时. 微量Hf对大角度晶界含Re双晶合金高温持久性能的影响[J]. 材料工程, 2019, 47(2): 76-83.
[14] 李灿, 陈文琳, 雷远. 微量Sr及均匀化工艺对Al-Mg-Si-Cu-Mn变形铝合金铸态组织与性能的影响[J]. 材料工程, 2019, 47(2): 90-98.
[15] 王宇, 熊柏青, 李志辉, 温凯, 黄树晖, 李锡武, 张永安. 新型超高强Al-Zn-Mg-Cu合金热压缩变形行为及微观组织特征[J]. 材料工程, 2019, 47(2): 99-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn