Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (11): 122-128    DOI: 10.11868/j.issn.1001-4381.2014.001018
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
高能球磨法制备高性能均一分散CNTs/Al5083复合材料
郭鲤, 蔡晓兰, 李铮, 周蕾, 彭刚, 张文忠, 王子阳
昆明理工大学 冶金与能源工程学院, 昆明 650093
CNTs/Al5083 Composites of High-performance Uniform and Dispersion Fabricated by High-energy Ball-milling
GUO Li, CAI Xiao-lan, LI Zheng, ZHOU Lei, PENG Gang, ZHANG Wen-zhong, WANG Zi-yang
Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
全文: PDF(4806 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用卧式高能球磨法制备0%~2% CNTs/Al5083(质量分数)复合材料,研究球磨时间和CNTs含量对复合材料性能的影响。采用扫描电镜(SEM)和透射电镜(TEM)对复合材料的形貌进行表征,测试复合材料的抗拉强度及硬度。结果表明:当球磨时间为1.5h时,CNTs可均匀分散在Al5083基体中;CNTs质量分数为1.5%时,CNTs/Al5083界面结合力最好,复合材料的抗拉强度和硬度分别为188.8MPa和136HV,比未加CNTs的Al5083合金基体分别提高了32.2%和36%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭鲤
蔡晓兰
李铮
周蕾
彭刚
张文忠
王子阳
关键词 Al5083CNTs高能球磨力学性能    
Abstract:Carbon nanotubes (CNTs, mass fraction of 0%-2%) reinforced Al5083 composites were fabricated by horizontal high-energy ball milling. The effects of ball milling time and CNTs contents on the properties of composite materials were studied. The micro morphology of CNTs/Al5083 composites was characterized by scanning electron microscopy(SEM) and transmission electron microscopy(TEM), the tensile strength and microhardness of the composites were tested. The results indicate that after high-energy ball milling for 1.5h, the carbon nanotubes are dispersed homogeneously in the Al5083 matrix, and good interfacial bonding strength between CNTs and Al5083 is obtained at the addition of 1.5%CNTs. Under these conditions, the tensile strength and microhardness of CNTs/Al5083 composites are 188.8MPa and 136HV, respectively. Compared to Al5083 matrix without CNTs reinforcement, tensile strength and microhardness of CNTs/Al5083 composites are increased by 32.2% and 36%, respectively.
Key wordsAl5083    CNTs    high-energy ball milling    mechanical property
收稿日期: 2014-09-05      出版日期: 2017-11-18
中图分类号:  TB331  
通讯作者: 蔡晓兰(1965-),女,教授,博士,从事专业:粉体及复合材料制备,联系地址:云南省昆明市昆明理工大学莲花校区冶能学院(650093),E-mail:cxl9761@126.com     E-mail: cxl9761@126.com
引用本文:   
郭鲤, 蔡晓兰, 李铮, 周蕾, 彭刚, 张文忠, 王子阳. 高能球磨法制备高性能均一分散CNTs/Al5083复合材料[J]. 材料工程, 2017, 45(11): 122-128.
GUO Li, CAI Xiao-lan, LI Zheng, ZHOU Lei, PENG Gang, ZHANG Wen-zhong, WANG Zi-yang. CNTs/Al5083 Composites of High-performance Uniform and Dispersion Fabricated by High-energy Ball-milling. Journal of Materials Engineering, 2017, 45(11): 122-128.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2014.001018      或      http://jme.biam.ac.cn/CN/Y2017/V45/I11/122
[1] LIJIMA S.Helical microtubes of graphite carbon[J].Nature,1991,354:56-58.
[2] PONCHARAL P,WANG Z L,UGARTE D,et al.Electrostatic deflections and electromechanical resonances of carbon nanotubes[J].Science,1999,283:13-16.
[3] DEMCZYK B G,WANG Y M,CUMING S J,et al.Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes[J].Mat Sci Eng:A,2002,334:173-178.
[4] SALVETAT J P,KULIK A J,BONARD J M,et al.Elastic modulus of ordered and disorder redmultiwalled carbon nanotubes[J].Adv Mater,1999,11(2):161-165.
[5] YU M F,LOURIE O,DYER M J,et al.Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load[J]. Science,2000,287(6):37-40.
[6] LEE K,LUKIC B,MAGREZ A,et al.Diameter-dependent elastic modulus supports the metastable-catalyst growth of carbon nanotubes[J]. Nano Let,2007,7(1):598-602.
[7] REN W C,CHENG H M. Herringbone-type carbon nanofibers with a small diameter and large hollow core synthesized by the catalytic decomposition of methane[J]. Carbon,2003,41(16):57-60.
[8] HAMWI A,ALVERGNAT H,BONNAMY S,et al.Fluorination of carbon nanotubes[J].Carbon,1997,35(26):723-727.
[9] WAGNER H D,VAIA R A.Nanocomposites issues at the interface[J].Mat Let,2004,7(11):38-42.
[10] COLEMAN J N,KHAN U,BLAU W J,et al.Small but strong:a review of the mechanical properties of carbon nanotube-polymer composites[J].Carbon,2006,44(16):24-32.
[11] NOGUCHI T,MAGARIO A,FUKAZAWA S,et al.Carbon nanotube/aluminium composites with uniform dispersion[J].Mat Tet,2004,45(8):46-50.
[12] LAHA T,AGARWAL A,MCKECHNIE T,et al.Synthesis and characterization of plasma spray formed carbon nanotube reinforced aluminum composite[J]. Mat Sci Eng:A,2004,381(2):49-58.
[13] HARRIS P J F.Carbon nanotube composites[J].Int Mat Rev, 2004,49(1):31-43.
[14] ESAW A,MORSI K.Dispersion of carbon nanotubes in aluminum powder[J].Composites A,2007,38(6):46-50.
[15] NEUBAUER E,KITZMANTEL M,HULMAN M,et al.Potential and challenges of metal-matrix-composites reinforced with carbon nanofibers and carbon nanotubes[J].Comp Sci Technol, 2010,70(22):28-36.
[16] GEORGE R,KASHYAOP K T,RAHUL R,et al.Strengthening in carbon nanotube/aluminium (CNT/Al) composites[J].Scr Mat,2005,53(11):59-63.
[17] LI Q,ROTTMAIR C A,SINGER R F.CNT reinforced light metal composites produced by melt stirring and by high pressure die casting[J].Comp Sci Technol,2010,70(22):42-47.
[18] DONG H N,SEUNG I C,BYUNG K L,et al.Synergistic strengthening by load transfer machine and grain refinement of CNT/Al-Cu composites[J].Carbon,2012,50(7):2417-2423.
[19] PEREZ B R,ESTRADA G I,AMEZAGA M P,et al.Microstructural characterization of Al-MWCNT composites produced by mechanical milling and hot extrusion[J].Composites A,2010,495(60):399-402.
[20] ESAWI A M,MORSI K,SAYED A,et al.Fabrication and properties of dispersed carbon nanotube-aluminum composites[J].Mat Sci Eng:A,2009,50(8):167-173.
[21] TORRALBA J M,COSTA C E,VELASCO F.P/M aluminum matrix composites:an overview[J].J Mater Process Technol,2003,133(20):3-6.
[22] DENG C F,WANG D Z,ZHANG X X.Processing and properties of carbon nanotubes reinforced aluminum composites[J].Mat Sci Eng:A,2007,44(4):138-145.
[23] JIANG L,LI Z Q,FANG G L,et al.The use of flake powder metallurgy to produce carbon nanotube (CNT)/aluminum composites with a homogenous CNT distribution[J] Carbon,2012,50(5):1993-1998.
[24] ESAWI A M,MORSI K,SAYED A,et al.Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites[J].Compos Sci Technol,2010,70(16):2237-2241.
[25] DENG C F,MA Y X, ZHANG P,et al.Thermal expansion behaviors of aluminum composite reinforced with carbon nanotubes[J].Mat Let,2008,62(23):1-3.
[26] WU Y F,KIM G Y,ALAN M R.Mechanical alloying of carbon nanotube and Al6061 powder for metal matrix composites[J].Mat Sci Eng:A,2012,53(2):558-566.
[27] 邓春锋,马艳霞,薛旭斌,等. 碳纳米管增强2024铝基复合材料的力学性能及断裂特性[J]. 材料科学与工艺,2010,18(2):229-232. DENG C F,MA Y X,XUE X B,et al.Mechanical properties and fracture characterization of 2024Al composite reinforced with carbon nanotube[J].Mat Sci Technol,2010,18(2):229-232.
[28] WANG L,CHOI H K,MYOUNG J M,et al. Mechanical alloying of multi-walled carbon nanotubes and aluminium powders for the preparation of carbon/metal composites[J]. Carbon, 2009,47(15):3427-3433.
[29] GEORGR R,KASHYAP K T,RAHUL R,et al.Strengthening in carbon nanotube/aluminium (CNT/Al) composites[J]. Scr Mat,2005,53(10):1159-1163.
[30] LIU Z Y,XIAO B L,WANG W G,et al.Developing high-performance aluminum matrix composites with directionally aligned carbon nanotubes by combining friction stir processing and subsequent rolling[J].Carbon,2013,62(48):35-42.
[31] BUSTAMANTE P,BUSTAMANTE R,ESTRADA L,et al.Effect of milling time and CNT concentration on hardness of CNT/2024Al composites produced by mechanical alloying[J].Materials Characterization,2013,75(53):13-19.
[1] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[2] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[3] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[4] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[5] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[6] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[7] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[8] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[9] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[10] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[11] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[12] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[13] 李晓红, 张彦华, 李赞, 李菊, 张田仓. 热处理温度对TC17(α+β)/TC17(β)钛合金线性摩擦焊接头组织及力学性能的影响[J]. 材料工程, 2020, 48(1): 115-120.
[14] 宋广胜, 纪开盛, 张士宏. AZ31镁合金棒材循环扭转变形及其对力学性能的影响[J]. 材料工程, 2019, 47(9): 46-54.
[15] 陈航, 弭光宝, 李培杰, 王旭东, 黄旭, 曹春晓. 氧化石墨烯对600℃高温钛合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(9): 38-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn