Influencing Mechanism of Electrochemical Treatment on Preparation of CNTs-grafted on Carbon Fibers
Lei SONG1,*(), Ji-qiang CHEN2, Wen-xin FAN2, Cheng-guo WANG2
1 School of Civil Engineering and Architecture, Linyi University, Linyi 276000, Shandong, China 2 School of Materials Science and Engineering, Shandong University, Jinan 250061, China
Based on electrochemical anodic oxidation, an innovative technique was developed to efficiently obtain the uniform catalyst coating on continuous carbon fibers. Through systematic investigation on the effect of electrochemical modified strength on the physical and chemical characteristics of carbon fiber surface, catalyst particles and the morphology of CNTs-grafted carbon fibers, tensile strength of multi-scale reinforcement and the interlaminar shear strength of its reinforced composites, the electrochemical modification process on carbon fibre surface was optimized. The results show that the morphology and distribution of catalyst particles not only affect the morphology of CNTs deposited on the surface of carbon fibres, but also affect the mechanical properties of multi-scale reinforcement and its reinforced composites of CNTs-grafted carbon fibers.
SHARMA S P , LAKKAD S C . Effect of CNTs growth on carbon fibers on the tensile strength of CNTs grown carbon fiber-reinforced polymer matrix composites[J]. Composites Part A, 2011, 42 (1): 8- 15.
doi: 10.1016/j.compositesa.2010.09.008
2
MATHUR R B , CHATTERJEE S , SINGH B P . Growth of carbon nanotubes on carbon fibre substrates to produce hybrid/phenolic composites with improved mechanical properties[J]. Composites Science and Technology, 2008, 68, 1608- 1615.
doi: 10.1016/j.compscitech.2008.02.020
3
SHARMA S P , LAKKAD S C . Compressive strength of carbon nanotubes grown on carbon fiber reinforced epoxy matrix multi-scale hybrid composites[J]. Surface and Coatings Technology, 2010, 205, 350- 355.
doi: 10.1016/j.surfcoat.2010.06.055
4
AGNIHOTRI P , BUSU S , KAR K K . Effect of carbon nanotube length and density on the properties of carbon nanotube-coated carbon fiber/polyester composites[J]. Carbon, 2011, 49, 3098- 3106.
doi: 10.1016/j.carbon.2011.03.032
YAO H W , ZHONG S G , LI X H , et al. Strengthening interface transition layer of carbon fiber/epoxy composites with CNTs and its effect on interfacial performance[J]. Journal of Materials Engineering, 2016, 44 (12): 13- 21.
doi: 10.11868/j.issn.1001-4381.2016.12.003
6
ZHAO F , HUANG Y , LIU L , et al. Formation of a carbon fiber/polyhedral oligomeric silsesquioxane/carbon nanotube hybrid reinforcement and its effect on the interfacial properties of carbon fiber/epoxy composites[J]. Carbon, 2011, 49, 2624- 2632.
doi: 10.1016/j.carbon.2011.02.026
7
DAVIS D C , WIKERSON J W , ZHU J , et al. Improvements in mechanical properties of a carbon epoxy composites using nanotubes science and technology[J]. Composites Structure, 2010, 92, 2653- 2662.
doi: 10.1016/j.compstruct.2010.03.019
8
AN Q , RIDER A N , THOSTENSON E T . Electrophoretic deposition of carbon nanotubes onto carbon-fiber fabric for production of carbon/epoxy composites with improved mechanical properties[J]. Carbon, 2012, 50, 4130- 4143.
doi: 10.1016/j.carbon.2012.04.061
9
WANG Y H , LIN J , HUAN C , et al. Synthesis of large area aligned carbon nanotube arrays from C2H2-H2 mixture by rf plasma-enhanced chemical vapor deposition[J]. Applied Physics Letters, 2001, 79, 680- 682.
doi: 10.1063/1.1390314
10
MATHUR R B , CHATTERJEE S , SINGH B P . Growth of carbon nanotubes on carbon fiber substrates to produce hybrid/phenolic composites with improved mechanical properties[J]. Composites Science and Technology, 2008, 68, 1608- 1615.
doi: 10.1016/j.compscitech.2008.02.020
11
SHARMA S P , LAKKAD S C . Morphology study of carbon nanospecies grown on carbon fibers by thermal CVD technique[J]. Surface and Coatings Technology, 2009, 203, 1329- 1335.
doi: 10.1016/j.surfcoat.2008.10.043
12
CHEN P , ZHANG H B . Studies on structure and property of carbon-nanotubes formed catalytically from decomposition of CH4 or CO[J]. Chemical Journal of Chinese Universities, 1998, 19, 765- 769.
13
SONOYAMA N , OHSHITA M , NIJUBU A , et al. Synthesis of carbon nanotubes on carbon fibers by means of two-step thermochemical vapor deposition[J]. Carbon, 2006, 44, 1754- 1761.
doi: 10.1016/j.carbon.2005.12.039
14
DOWN W B , BAKER R . Modification of the surface properties of carbon fibers via the catalytic growth of carbon nanofibers[J]. Journal of Materials Research, 1995, 10, 625- 633.
doi: 10.1557/JMR.1995.0625
15
MASCHMANN M R , AMAMA P B , GOYAL A , et al. Freestanding vertically oriented single-walled carbon nanotubes synthesized using microwave plasma-enhanced CVD[J]. Carbon, 2006, 44, 2758- 2763.
doi: 10.1016/j.carbon.2006.03.040
16
PITTMAN C U , JIANG W , YUE Z R , et al. Surface properties of electrochemically oxidized carbon fibers[J]. Carbon, 1999, 37, 1797- 1807.
doi: 10.1016/S0008-6223(99)00048-2
JING P Z , ZHU S , YU M H , et al. Preparation of carbon fiber fabric reinforced polyphenylene sulfide (CFF/PPS) thermoplastic composites based on surface modification of carbon fibers[J]. Journal of Materials Engineering, 2016, 44 (3): 21- 27.
doi: 10.11868/j.issn.1001-4381.2016.03.004
GUO Y X , LIU J , LIANG J Y . Modification mechanism of the surface-treated PAN-based carbon fiber by electrochemical oxidation[J]. Journal of Inorganic Materials, 2009, 24, 853- 858.
HAN F , PAN D . Characterization of electro-chemically treatea carbon fiber surface[J]. Hi-Tech Fiber and Application, 2000, 25 (1): 39- 43.
20
GREEF N D , ZHANG L M , MAGREZ A , et al. Direct growth of carbon nanotubes on carbon fibers:effect of the CVD parameters on the degradation of mechanical properties of carbon fibers[J]. Diamond and Related Materials, 2015, 51, 39- 48.
doi: 10.1016/j.diamond.2014.11.002
21
林治涛. PAN基碳纤维制备过程中表面处理关键技术研究[D]. 济南: 山东大学, 2014.
21
LIN Z T. Study on key techniques of the surface treatment during the process of manufacturing PAN-based carbon fibers[D].Jinan:Shandong University, 2014.
22
LINSAY B , ABELM L , WATTS J F . A study of electrochemically treated PAN based carbon fibers by IGC and XPS[J]. Carbon, 2007, 45, 2433- 2444.
doi: 10.1016/j.carbon.2007.04.017
23
YUE Z R , JIANG W , WANG L , et al. Surface characterization of electrochemically oxidized carbon fibers[J]. Carbon, 1999, 37, 1785- 1796.
doi: 10.1016/S0008-6223(99)00047-0
24
NERUSHEV O A , DITTMAR S , MORJAN R E , et al. Particle size dependence and model for iron-catalyzed growth of carbon nanotubes by thermal chemical vapor deposition[J]. Journal of Applied Physics, 2003, 93, 4185- 4190.
doi: 10.1063/1.1559433
25
YUMITORI S , NAKANISHI Y . Effect of anodic oxidation of coal tar pitch-based carbon fiber on adhesion in epoxy matrix:part 1 comparison between H2SO4 and NaOH solutions[J]. Composites Part A, 1996, 27, 1051- 1058.
doi: 10.1016/1359-835X(96)00057-7