Please wait a minute...
 
2222材料工程  2017, Vol. 45 Issue (11): 58-65    DOI: 10.11868/j.issn.1001-4381.2017.000459
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
W掺杂二氧化钒的水热晶化机理及其相变性能
李尧1, 卢怡2, 曹文斌1,3,*()
1 北京科技大学 材料科学与工程学院, 北京 100083
2 解放军306 医院 口腔科, 北京 100101
3 北京科技大学 天津学院, 天津 301830
Crystallization Mechanism and Phase Transition Properties of W-doped VO2 Synthesized by Hydrothermal Method
Yao LI1, Yi LU2, Wen-bin CAO1,3,*()
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Department of Stomatology, the 306 Hospital of PLA, Beijing 100101, China
3 Tianjin College, University of Science and Technology Beijing, Tianjin 301830, China
全文: PDF(3668 KB)   HTML ( 50 )  
输出: BibTeX | EndNote (RIS)      
摘要 

以硫酸氧钒为钒源,采用沉淀-胶溶法制备VO2溶胶。然后向溶胶中加入偏钒酸铵,利用溶胶水热晶化制备出W掺杂二氧化钒(W-VO2,M相)粉体。通过XRD,FESEM和DSC对合成产物的物相组成、形貌和相变性能进行研究。结果表明:在280℃条件下水热处理4~48h,VO2溶胶经过水热晶化生成长约1~2μm、直径约100~200nm棒状W-VO2(B)晶体,伴随着B相向M相晶型转变,W-VO2(B)逐渐消溶,而W-VO2(M)逐渐长大,形貌由棒状转变为片状或雪花状;W-VO2(M)相变温度随着W掺杂量增加而降低,当名义掺杂量为6.0%(原子分数)时,相变温度降低到28℃。根据水热晶化和形貌演变过程,提出了W-VO2(M)可能的"形核-生长-转化-熟化"形成机理。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李尧
卢怡
曹文斌
关键词 二氧化钒水热合成相变温度钨掺杂    
Abstract

VO2 sol was firstly prepared using vanadyl sulfate as a vanadium source by precipitation-peptization method. Then tungsten(W) doping vanadium dioxide(W-VO2) was prepared by hydrothermal crystallization of prepared sol with the presence of ammonium metatungstate. The morphologies, crystal structure of the as-prepared samples and phase transition properties were studied by X-ray diffraction(XRD), field emission scanning electron microscope(FESEM)and differential scanning calorimetry(DSC) analysis. The results indicate that rod-like W-VO2(B) crystal with length of 1-2μm and radius of 100-200nm is firstly formed during hydrothermal treatment for 4-48h at 280℃, then the rod-like crystal dissolves gradually and sheet-like or snowflake-like crystal is formed with the phase transition from W-VO2(B) to W-VO2(M) and eventually, the W-VO2(M) crystals can further grow up while the W-VO2(B) gradually dissolves; the phase transition temperature of VO2 decreases with the increase in W doping content, and the phase transition temperature of W-VO2(M) reduces to about 28℃ when the nominal dopant concentration is 6.0%(atom fraction).The "nucleation-growth-transformation-ripening" mechanism is proposed as the formation mechanism based on the hydrothermal crystallization and morphological evolution process of W-VO2(M).

Key wordsvanadium dioxide    hydrothermal synthesis    transition temperature    tungsten doping
收稿日期: 2017-04-16      出版日期: 2017-11-18
中图分类号:  O614.51  
基金资助:国家重点研究发展计划资助项目(2016YFC0700901);国家重点研究发展计划资助项目(2016YFC0700607)
通讯作者: 曹文斌     E-mail: wbcao@ustb.edu.cn
作者简介: 曹文斌(1970-), 男, 教授, 博士, 主要从事半导体光催化材料、电磁波吸波材料、特种热致相变材料的研究工作, 联系地址:北京市海淀区学院路30号北京科技大学主楼425室(100083), E-mail:wbcao@ustb.edu.cn
引用本文:   
李尧, 卢怡, 曹文斌. W掺杂二氧化钒的水热晶化机理及其相变性能[J]. 材料工程, 2017, 45(11): 58-65.
Yao LI, Yi LU, Wen-bin CAO. Crystallization Mechanism and Phase Transition Properties of W-doped VO2 Synthesized by Hydrothermal Method. Journal of Materials Engineering, 2017, 45(11): 58-65.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000459      或      http://jme.biam.ac.cn/CN/Y2017/V45/I11/58
Fig.1  水热法制备W-VO2流程图
Fig.2  不同水热条件下样品的XRD谱图
(a)280℃无掺杂和230~280℃时1.0%W掺杂;(b)1.0%W掺杂反应4~48h
Fig.3  1.0%W-VO2样品的XPS谱图
(a)全谱图; (b)V2p和O1s;(c)W4f
Fig.4  不同W掺杂量的W-VO2样品的XRD谱图(a)及27.0°≤2θ≤28.5°范围放大图(b)
Fig.5  不同水热时间时W-VO2-1的FESEM图 (a)4h;(b)6h;(c)12h;(d)24h;(e)36h;(f)48h
Fig.6  1.0%W掺杂样品的XRD谱图
Fig.7  W-VO2(B相到M相)晶型转变形貌演变过程
Fig.8  W-VO2样品在-20~100℃的DSC曲线
(a)W-VO2-1;(b)W-VO2-3;(c)W-VO2-6
1 MORIN F J . Oxides which show a metal-to-lnsulator transition at the neel temperature[J]. Physical Review Letters, 1959, 3 (1): 34- 36.
doi: 10.1103/PhysRevLett.3.34
2 JO C W , KIM H J , YOOJ W . Thermochromic properties of W-Mo Co-doped VO2(M) nanoparticles according to reaction parameters[J]. Journal of Nanoscience and Nanotechnology, 2017, 17 (5): 2923- 2928.
doi: 10.1166/jnn.2017.14049
3 XU S Q , MA H P , DAI S X , et al. Study on optical and electrical switching properties and phase transition mechanism of Mo6+-doped vanadium dioxide thin films[J]. Journal of Materials Science, 2004, 39 (2): 489- 493.
doi: 10.1023/B:JMSC.0000011503.22893.f4
4 WANG N , DUCHAMP M , XUE C , et al. Single-crystalline W-doped VO2nanobeams with highly reversible electrical and plasmonic responses near room temperature[J]. Advanced Materials Interfaces, 2016, 3 (15): 1600164- 1600172.
doi: 10.1002/admi.201600164
5 ZHANG Y , ZHANG J , ZHANG X , et al. The additives W, Mo, Sn and Fe for promoting the formation of VO2(M) and its optical switching properties[J]. Materials Letters, 2013, 92 (2): 61- 64.
6 QUESADA-CABRERA R , POWELL M J , MARCHAND P , et al. Scalable production of thermochromic Nb-doped VO2 nanomaterials using continuous hydrothermal flow synthesis[J]. Journal of Nanoscience and Nanotechnology, 2016, 16 (9): 10104- 10111.
doi: 10.1166/jnn.2016.12842
7 TAN X , YAO T , LONG R , et al. Unraveling metal-insulator transition mechanism of VO2 triggered by tungsten doping[J]. Scientific Reports, 2012, 2 (6): 466- 471.
8 LIANG Z , ZHAO L , MENG W , et al. Tungsten-doped vanadium dioxide thin films as smart windows with self-cleaning and energy-saving functions[J]. Journal of Alloys and Compounds, 2017, 694, 124- 131.
doi: 10.1016/j.jallcom.2016.09.315
9 DONG B , SHEN N , CAO C , et al. Phase and morphology evolution of VO2 nanoparticles using a novel hydrothermal system for thermochromic applications:the growth mechanism and effect of ammonium (NH4+)[J]. Rsc Advances, 2016, 6 (85): 81559- 81568.
doi: 10.1039/C6RA14569H
10 ZHANG C X , CHENG J , ZHANG J , et al. Simple and facile synthesis W-doped VO2 (M) powder based on hydrothermal pathway[J]. International Journal of Electrochemical Science, 2015, 10 (7): 6014- 6019.
11 RAJESWARAN B , UMARJI A M . Phase evolution and infrared transmittance in monophasic VO2 synthesized by a rapid non-equilibrium process[J]. Materials Chemistry and Physics, 2017, 190, 219- 229.
doi: 10.1016/j.matchemphys.2016.12.070
12 GALY J . A proposal for (B)VO2⇒(A)VO2 phase transition:a simple crystallographic slip[J]. Journal of Solid State Chemistry, 1999, 148 (2): 224- 228.
doi: 10.1006/jssc.1999.8436
13 LI W , JI S , LI Y , et al. Synthesis of VO2 nanoparticles by a hydrothermal-assisted homogeneous precipitation approach for thermochromic applications[J]. Rsc Advances, 2014, 4 (25): 13026- 13033.
doi: 10.1039/C3RA47666A
14 WANG S , WAN M , HUANG B , et al. Influence of annealing temperature on the structure and morphology of the nano VO2 powder[J]. Rare Metal Materials and Engineering, 2016, 45 (1): 278- 281.
15 CAO C , GAO Y , LUO H . Pure single-crystal rutile vanadium dioxide powders:synthesis, mechanism and phase-transformation property[J]. Journal of Physical Chemistry C, 2008, 112 (48): 18810- 18814.
doi: 10.1021/jp8073688
16 LI M , LI D B , PAN J , et al. W-doped VO2(M) with tunable phase transition temperature[J]. Applied Mechanics and Materials, 2013, 320, 483- 487.
doi: 10.4028/www.scientific.net/AMM.320
17 ZHANG Y F , ZHANG J C , ZHANG X Z , et al. Direct preparation and formation mechanism of belt-like doped VO2(M) with rectangular cross sections by one-step hydrothermal route and their phase transition and optical switching properties[J]. Journal of Alloys and Compounds, 2013, 570 (38): 104- 113.
18 LI Y , JIANG P , XIANG W , et al. A novel inorganic precipitation-peptization method for VO2 sol and VO2 nanoparticles preparation:synthesis, characterization and mechanism[J]. Journal of Colloid and Interface Science, 2016, 462 (5): 42- 47.
19 WHITTAKER L , WU T L , PATRIDGE C J , et al. Distinctive finite size effects on the phase diagram and metal-insulator transitions of tungsten-doped vanadium(Ⅳ) oxide[J]. Journal of Materials Chemistry, 2011, 21 (15): 5580- 5592.
doi: 10.1039/c0jm03833d
20 CORR S A , GROSSMAN M , SHI Y , et al. VO2(B) nanorods:solvothermal preparation, electrical properties, and conversion to rutile VO2 and V2O3[J]. Journal of Materials Chemistry, 2009, 19 (25): 4362- 4367.
doi: 10.1039/b900982e
21 THÉOBALD F . Étude hydrothermale du système VO2-VO2, 5-H2O[J]. Journal of the Less Common Metals, 1977, 53 (1): 55- 71.
doi: 10.1016/0022-5088(77)90157-6
22 SOLTANE L , SEDIRI F , GHARBI N . Hydrothermal synthesis of mesoporous VO2·1/2(H2O) nanosheets and study of their electrical properties[J]. Materials Research Bulletin, 2012, 47 (7): 1615- 1620.
doi: 10.1016/j.materresbull.2012.03.064
23 ZHANG Y , HUANG Y . A facile hydrothermal synthesis of tungsten doped monoclinic vanadium dioxide with B phase for supercapacitor electrode with pseudocapacitance[J]. Materials Letters, 2016, 182 (1): 285- 288.
24 YU W , LI S , HUANG C . Phase evolution and crystal growth of VO2 nanostructures under hydrothermal reactions[J]. Rsc Advances, 2016, 6 (9): 7113- 7120.
doi: 10.1039/C5RA23898F
25 BAL-DEMIRCI T , SAHIN M , KONDAKCI E , et al. Synthesis and antioxidant activities of transition metal complexes based 3-hydroxysalicylaldehyde-S-methylthiosemicarbazone[J]. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 2015, 138, 866- 872.
doi: 10.1016/j.saa.2014.10.088
26 李汶军, 施尔畏, 殷之文. 离子晶体生长机理及其生长习性[J]. 人工晶体学报, 2001, 30 (3): 232- 241.
26 LI W J , SHI E W , YIN Z W . Growth mechanism and growth habit of crystals[J]. Journal of Synthetic Crystals, 2001, 30 (3): 232- 241.
27 李汶军, 施尔畏, 郑燕青, 等. 氧化物晶体的成核机理与晶粒粒度[J]. 无机材料学报, 2000, 15 (5): 777- 786.
27 LI W J , SHI E W , ZHENG Y Q , et al. Nucleating mechanism of oxide crystal and its particle size[J]. Journal of Inorganic Materials, 2000, 15 (5): 777- 786.
28 李汶军, 施尔畏, 殷之文. 晶体的生长习性与配位多面体的形态[J]. 人工晶体学报, 1999, 28 (4): 368- 372.
28 LI W J , SHI E W , YIN Z W . Growth habit of crystal and the shape of coordination polyhedron[J]. Journal of Synthetic Crystals, 1999, 28 (4): 368- 372.
29 LEROUX C , NIHOUL G , TENDELOO G V . From VO2(B) to VO2(R):theoretical structures of VO2 polymorphs and in situ electron microscopy[J]. Physical Review B, 1998, 57 (9): 5111- 5121.
doi: 10.1103/PhysRevB.57.5111
30 WU Y F , FAN L L , HUANG W F , et al. Depressed transition temperature of WxV1-xO2:mechanistic insights from the X-ray absorption fine structure (XAFS) spectroscopy[J]. Physical Chemistry Chemical Physics, 2014, 16 (33): 17705- 17714.
doi: 10.1039/C4CP01661K
31 TAN X G , YAO T , LONG R , et al. Unraveling metal-insulator transition mechanism of VO2 triggered by tungsten doping[J]. Scientific Reports, 2012, 2 (6): 466- 471.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn