Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (11): 84-89    DOI: 10.11868/j.issn.1001-4381.2016.000518
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
AZ31B镁合金/PRO500超高强度钢TIG熔钎连接界面反应特性及力学性能
陈建华, 张喜燕, 任毅
重庆大学 材料科学与工程学院, 重庆 400044
Interfacial Reaction Characteristics and Mechanical Properties of Welding-brazing Bonding Between AZ31B Magnesium Alloy and PRO500 Ultra-high Strength Steel
CHEN Jian-hua, ZHANG Xi-yan, REN Yi
College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
全文: PDF(1996 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 利用TIG电弧作为热源开展AZ31B镁合金与超高强度钢PRO500熔钎连接实验,研究界面反应特性及力学性能。结果表明:AZ31B镁合金/PRO500钢能够利用TIG电弧熔钎焊实现有效连接;接头界面中各基体元素的氧化具有强烈的热力学自发性并在接头界面中形成氧化物聚集且包含AlFe3相的过渡区,其硬度介于两种基材之间;界面中靠近钎接位置的钢基体在焊接热循环作用下会出现回火软化现象;大的焊接热输入会导致界面过渡区中脆性化合物相增多,结合强度显著下降。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈建华
张喜燕
任毅
关键词 界面反应镁合金超高强度钢熔钎焊性能    
Abstract:Experiments were carried out with TIG welding-brazing of AZ31B magnesium alloy to PRO500 steel using TIG arc as heat source. The interfacial reaction characteristics and mechanical properties of the welding-brazing bonding were investigated. The results show that an effective bonding is achieved between AZ31B magnesium alloy and PRO500 steel by using TIG welding-brazing method. Some spontaneous oxidation reactions result in the formation of a transition zone containing AlFe3 phase with rich oxide. The micro-hardness value of the interfacial transition zone is between that of the AZ31B and the PRO500. Temper softening zone appears due to the welding thermal cycle nearby the bonding position in the interface. A higher heat input makes an increase of the brittle phases and leads to an obvious decrease of the bonding strength.
Key wordsinterfacial reaction    magnesium alloy    ultra-high strength steel    welding-brazing    property
收稿日期: 2016-05-04      出版日期: 2017-11-18
中图分类号:  TG47  
通讯作者: 张喜燕(1958-),男,教授/博导,博士,主要从事金属材料研究,联系地址:重庆市沙坪坝区沙正街174号重庆大学材料科学与工程学院(400044),E-mail:kehen888@163.com     E-mail: kehen888@163.com
引用本文:   
陈建华, 张喜燕, 任毅. AZ31B镁合金/PRO500超高强度钢TIG熔钎连接界面反应特性及力学性能[J]. 材料工程, 2017, 45(11): 84-89.
CHEN Jian-hua, ZHANG Xi-yan, REN Yi. Interfacial Reaction Characteristics and Mechanical Properties of Welding-brazing Bonding Between AZ31B Magnesium Alloy and PRO500 Ultra-high Strength Steel. Journal of Materials Engineering, 2017, 45(11): 84-89.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000518      或      http://jme.biam.ac.cn/CN/Y2017/V45/I11/84
[1] MAITY S K, RAJAK A K, SHEKHAR M C, et al. Development of ultra high strength steel by electroslag refining and thermomechanical treatment[J]. Transactions of the Indian Institute of Metals, 2015, 69(3):1-12.
[2] MANDAL P K, KANT R. Effect of microalloying elements on mechanical properties in the high strength low alloy steel[J]. Journal of Biotechnology, 2015, 830/831(6):231-233.
[3] 习吕鹏,杨丽,高翔,等. 超高强钢DomexProtect500焊接性能试验研究[J]. 汽车工艺与材料, 2015(7):7-10. XI L P, YANG L, GAO X, et al. Experimental study on the welding properties of the ultra-high strength steel DomexProtect500[J]. Automobile Technology & Material, 2015(7):7-10.
[4] 张治民,张星,王强,等. 重型车辆传动行动构件轻量化设计研究[J]. 机械工程学报, 2012, 48(18):67-71. ZHANG Z M, ZHANG X, WANG Q, et al. Research on lightweight design of heavy vehicle transmission and action components[J]. Journal of Mechanical Engineering, 2012, 48(18):67-71.
[5] 余琨,黎文献,王日初,等. 变形镁合金的研究、开发及应用[J]. 中国有色金属学报, 2003, 13(2):277-288. YU K, LI W X, WANG R C, et al. Research, development and application of wrought magnesium alloys[J]. The Chinese Journal of Nonferrous Metals, 2003, 13(2):277-288.
[6] 张丁非,张红菊,兰伟,等. 高强镁合金的研究进展[J]. 材料热处理学报, 2012, 33(6):1-8. ZHANG D F, ZHANG H J, LAN W, et al. Some research progress of high-strength magnesium alloys[J]. Transactions of Materials and Heat Treatment, 2012, 33(6):1-8.
[7] SCHNEIDER C, WEINBERGER T, INOUE J, et al. Characterisation of interface of steel/Mg FSW[J]. Science and Technology of Welding & Joining, 2011, 16(1):100-107.
[8] 林君, 张大童, 张文,等. 前进速率对搅拌摩擦加工ZK60镁合金组织和力学性能的影响[J]. 航空材料学报, 2017, 37(1):52-58. LIN J, ZHANG D T, ZHANG W, et al. Influence of processing speed on microstructure and mechanical properties of ZK60 magnesium alloy prepared by friction stir processing[J]. Journal of Aeronautical Materials, 2017, 37(1):52-58.
[9] LIU L, XIAO L, FENG J C, et al. The mechanisms of resistance spot welding of magnesium to steel[J]. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 2010, 41(10):2651-2661.
[10] LIU L M, ZHAO X. Study on the weld joint of Mg alloy and steel by laser-GTA hybrid welding[J]. Materials Characterization, 2008, 59(9):1279-1284.
[11] 秦仁耀, 孙兵兵, 肇恒跃,等. ZM5镁合金TIG焊接接头组织与力学性能[J]. 材料工程, 2016, 44(6):92-97. QIN R Y, SUN B B, ZHAO H Y, et al. Microstructure and mechanical properties of TIG weld joint of ZM5 magnesium alloy[J]. Journal of Materials Engineering, 2016, 44(6):92-97.
[12] 谢丽初,陈振华,俞照辉. ZK60镁合金的CO2激光焊接工艺研究[J]. 中南大学学报(自然科学版), 2011, 42(5):1332-1337. XIE L C, CHEN Z H, YU Z H. CO2 laser welding process on ZK60 magnesium alloy[J]. Journal of Central South University (Science and Technology), 2011, 42(5):1332-1337.
[13] 黄健康,邵玲,石玗,等. 铝合金与镀锌钢脉冲旁路耦合电弧GMAW熔钎焊搭接工艺及接头性能的研究[J]. 材料工程, 2014(3):21-26. HUANG J K, SHAO L,SHI Y, et al. Pulsed DE-GMA welding brazing lap between aluminum alloy and galvanized steel and properties of lap joint[J]. Journal of Materials Engineering, 2014(3):21-26.
[14] LI L, TAN C, CHEN Y, et al. Comparative study on microstructure and mechanical properties of laser welded-brazed Mg/mild steel and Mg/stainless steel joints[J]. Materials & Design, 2013, 43(43):59-65.
[15] MIAO Y, WU B, XU X, et al. Effect of heat input on microstructure and mechanical properties of joints made by bypass-current MIG welding-brazing of magnesium alloy to galvanized steel[J]. Acta Metallurgica Sinica(English Letters), 2014, 27(6):1038-1045.
[16] VASSENT J L, MARTY A, GILLES B, et al. Thermodynamic analysis of molecular beam epitaxy of MgO(s) Ⅱ. Epitaxial growth of MgO layers on Fe(001) substrates[J]. Journal of Crystal Growth, 2000, 219(4):444-450.
[17] 叶大伦,胡建华. 实用无机物热力学数据手册(第二版)[M]. 北京:冶金工业出版社, 2002.
[18] PIERRE D, VIALA J C, PERONNET M, et al. Interface reactions between mild steel and liquid Mg-Mn alloys[J]. Materials Science and Engineering:A, 2003, 349(Suppl 1/2):256-264.
[1] 刘培生, 夏凤金, 程伟. 多孔材料性能模型研究2:实验验证[J]. 材料工程, 2019, 47(7): 35-49.
[2] 杨旭东, 安涛, 邹田春, 巩天琛. 湿热环境对碳纤维增强树脂基复合材料力学性能的影响及其损伤机理[J]. 材料工程, 2019, 47(7): 84-91.
[3] 徐斌, 陈程华, 张彩霞, 鲁聪达, 倪忠进. 热分解法制备Cu空心微球及其光热转换性能[J]. 材料工程, 2019, 47(7): 57-63.
[4] 王聃, 陶德华, 黄秀玲, 华子恺. 聚甲基丙稀酸羟乙酯甘油凝胶仿软骨材料的制备与性能[J]. 材料工程, 2019, 47(7): 71-75.
[5] 李立珺, 苗瑞霞, 张霞. 氧化锡纳米线的制备及其乙醇气体敏感性能[J]. 材料工程, 2019, 47(6): 82-87.
[6] 刘培生, 崔光, 程伟. 多孔材料性能模型研究1:数理关系[J]. 材料工程, 2019, 47(6): 42-62.
[7] 马明亮, 杨玉莹, 吕平, 贾丽, 贾新城, 陈柳, 孔令运, 池丽凤. 磁性核壳Fe3O4/P (GMA-DVB)-SH-Au复合催化剂的制备及催化性能[J]. 材料工程, 2019, 47(6): 70-76.
[8] 冀光普, 何秀芳, 廖海峰, 戴乐阳, 孙迪, 蔡谷昌. 等离子体辅助球磨制备表面修饰片状纳米Cu粉及摩擦学性能[J]. 材料工程, 2019, 47(6): 114-120.
[9] 刘文祎, 徐聪, 刘茂文, 肖文龙, 马朝利. 稀土元素Gd对Al-Si-Mg铸造合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(6): 129-135.
[10] 任书杰, 罗飞, 田野, 刘大博, 王克鲁, 鲁世强. A100超高强度钢的流变应力曲线修正与唯象本构关系[J]. 材料工程, 2019, 47(6): 144-151.
[11] 王飞云, 金建军, 江志华, 王晓震, 胡春文. 热处理温度对新型马氏体时效不锈钢微观组织和性能的影响[J]. 材料工程, 2019, 47(6): 152-160.
[12] 韩梅, 谢洪吉, 李嘉荣, 董建民, 岳晓岱, 喻健, 杨亮. 再结晶对DD6单晶高温合金轴向高周疲劳性能的影响[J]. 材料工程, 2019, 47(6): 161-168.
[13] 陈海龙, 杨学锋, 王守仁, 鹿重阳, 吴元博. 改性酚醛树脂陶瓷摩擦材料的摩擦磨损性能[J]. 材料工程, 2019, 47(6): 108-113.
[14] 闫钊鸣, 张治民, 杜玥, 张冠世, 任璐英. 均匀化处理对Mg-13Gd-3.5Y-2Zn-0.5Zr镁合金组织和力学性能的影响[J]. 材料工程, 2019, 47(5): 93-99.
[15] 张志斌, 尉小凤, 王海涛, 史雪婷, 冯利邦. 金属基超疏水表面的制备及性能研究进展[J]. 材料工程, 2019, 47(5): 26-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn