Please wait a minute...
 
2222材料工程  2017, Vol. 45 Issue (11): 96-101    DOI: 10.11868/j.issn.1001-4381.2015.001277
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
糊状钎剂浓度对其黏附行为的影响
杜全斌1, 龙伟民1,*(), 路全彬1, 孙华为1, 王星星2, 鲍丽1
1 郑州机械研究所 新型钎焊材料与技术国家重点实验室, 郑州 450001
2 华北水利水电大学 机械学院, 郑州 450045
Effect of Paste Flux Concentration on Adhesion Behavior
Quan-bin DU1, Wei-min LONG1,*(), Quan-bin LU1, Hua-wei SUN1, Xing-xing WANG2, Li BAO1
1 State Key Laboratory of Advanced Brazing Filler Metals and Technology, Zhengzhou Research Institute of Mechanical Engineering, Zhengzhou 450001, China
2 School of Mechanical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
全文: PDF(3201 KB)   HTML ( 24 )  
输出: BibTeX | EndNote (RIS)      
摘要 

针对糊状钎剂在钎料表面难以均匀润湿铺展的问题,采用金相显微镜、润湿角测定仪、表面张力仪等分析设备,对不同浓度糊状钎剂在钎料表面的黏附行为进行研究。结果表明:糊状钎剂的黏附层随浓度的增大而逐渐增厚,薄黏附层发生少量收缩现象,厚黏附层发生大量下滑脱落及收缩现象。对于理想表面,不同浓度糊状钎剂的黏附张力相同。对于实际表面,表面条纹槽对糊状钎剂具有附加压力作用,附加压力是黏附层收缩发生滞后现象的主要原因。随着糊状钎剂浓度的增大,附加压力和滞后阻力减小,收缩加剧。薄黏附层收缩需满足:ΔWCAP,即收缩现象发生与否主要取决于黏附张力和附加压力。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜全斌
龙伟民
路全彬
孙华为
王星星
鲍丽
关键词 钎剂表面张力内聚力表观接触角    
Abstract

In view of the problem that paste flux is difficult to spread uniformly on the surface of filler metal, the adhesion behavior of the different concentrations of paste flux on the surface of filler metal was studied by the equipment of OM, wetting angle tester and surface tensiometer. The results show that adhesive layer is gradually thickened with the increase of the concentration of paste flux. A small amount of shrinkage appears in the thin adhesive layer. however, mass paste flux slides off filler metal when adhesive layer is thicker, accompanying by severe aggregation and shrinkage. For the ideal surface, the adhesive tension of paste flux with different concentrations of paste flux is the same. For the actual surface, the stripe groove additional pressure is formed when paste flux wets stripe groove, and the additional pressure is the main reason for the lagging phenomenon of the shrinkage of the adhesive layer. With the increase of paste flux concentration, the additional pressure decreases, the hysteresis resistance decreases, and the shrinkage increases. A relationship is satisfied when the shrinkage takes place in thin adhesive layer, this is ΔWCAP. Whether the shrinkage occurs mainly depends on the adhesion tension and the additional pressure.

Key wordsflux    surface tension    cohesion force    apparent contact angle
收稿日期: 2015-10-26      出版日期: 2017-11-18
中图分类号:  TG142  
基金资助:国家国际科技合作计划项目(2015DFA50470)
通讯作者: 龙伟民     E-mail: brazelong@163.com
作者简介: 龙伟民(1966-), 男, 研究员, 博士生导师, 研究方向:新型钎焊材料、钎焊工艺及钎焊设备, 联系地址:河南省郑州市高新技术开发区科学大道与红松路郑州机械研究所新型钎焊材料与技术国家重点实验室(450001), E-mail:brazelong@163.com
引用本文:   
杜全斌, 龙伟民, 路全彬, 孙华为, 王星星, 鲍丽. 糊状钎剂浓度对其黏附行为的影响[J]. 材料工程, 2017, 45(11): 96-101.
Quan-bin DU, Wei-min LONG, Quan-bin LU, Hua-wei SUN, Xing-xing WANG, Li BAO. Effect of Paste Flux Concentration on Adhesion Behavior. Journal of Materials Engineering, 2017, 45(11): 96-101.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.001277      或      http://jme.biam.ac.cn/CN/Y2017/V45/I11/96
Fig.1  糊状钎剂在钎料表面的黏附状态(a)33.3%;(b) 50.0%;(c)66.7%;(d)75.0%
Fig.2  钎料表面微观形貌
Fig.3  糊状钎剂的表面张力
Fig.4  糊状钎剂的表观接触角影像(a)θW=52.9°; (b)θW=59.0°; (c)θW=67.0°; (d)θW=70.4°
Fig.5  糊状钎剂的表观接触角
Mass fraction/% θA/(°) θR/(°) θA-θR/(°)
33.3 96.9 25.4 71.5
50.0 104.7 10.5 94.2
66.7 107.0 2.0 105.0
75.0 110.4 0.0 110.4
Table 1  糊状钎剂在钎料表面的滞后性
Mass fraction/% θy /(°) A /(mN·m-1)
33.3 66.9 27.58
50.0 68.6 26.70
66.7 69.3 27.46
75.0 71.0 26.97
Table 2  糊状钎剂的θy和黏附张力A
Fig.6  糊状钎剂收缩后静态形貌图
Fig.7  糊状钎剂微区进行受力分析
Massfraction/% σLG/
(mN·m-1)
θW/
(°)
θy/
(°)
ΔP/
(mN·m-1)
33.3 70.30 52.9 66.9 14.82
50.0 73.18 59.0 68.6 10.99
66.7 77.67 67.0 69.3 2.89
75.0 82.80 70.4 71.0 0.82
Table 3  糊状钎剂在钎料表面的附加压力
Fig.8  较薄黏附层收缩行为示意图(a)初始未收缩; (b)静置未收缩; (c)静置收缩
Fig.9  较厚黏附层收缩行为示意图(a)脱落前; (b)脱落中; (c)静置收缩
1 龙伟民, 乔培新, 曾大本, 等. 自钎剂铝钎料的研制与应用前景[J]. 焊接技术, 2002, 35 (5): 33- 34.
1 LONG W M , QIAO P X , ZENG D B , et al. Development and application of self-flux aluminum brazing metal[J]. Welding Technology, 2002, 35 (5): 33- 34.
2 龙伟民, 路全斌, 何鹏, 等. 钎焊过程原位合成Al-Si-Cu合金及接头性能[J]. 材料工程, 2016, 44 (6): 17- 23.
doi: 10.11868/j.issn.1001-4381.2016.06.003
2 LONG W M , LU Q B , HE P , et al. In situ synthesis of Al-Si-Cu alloy during brazing process and mechanical property of brazing joint[J]. Journal of Materials Engineering, 2016, 44 (6): 17- 23.
doi: 10.11868/j.issn.1001-4381.2016.06.003
3 周许升, 龙伟民. 不锈钢软钎焊用钎料和钎剂的研究[J]. 焊接, 2014, (1): 50- 53.
3 ZHOU X S , LONG W M . Study on solder and flux for soldering stainless steel[J]. Welding, 2014, (1): 50- 53.
4 GERDES S , CAZABAT A M , STRÖM G , et al. Effect of surface structure on the spreading of a PDMS droplet[J]. Langmuir, 1998, 14 (24): 7052- 7057.
doi: 10.1021/la980673j
5 MIWA M , NAKAJIMA A , FQISHIMA A , et a1 . Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces[J]. Langmuir, 2000, 16 (13): 5754- 5760.
doi: 10.1021/la991660o
6 BICO J , TOREUX C , QUERE D . Rough wetting[J]. Eur Phys Lett, 2001, 55 (2): 214- 220.
doi: 10.1209/epl/i2001-00402-x
7 ISHINO C , OKUMURA K , QUERE D . Wetting transitions on rough surfaces[J]. Europhys Lett, 2004, 68 (3): 419- 425.
doi: 10.1209/epl/i2004-10206-6
8 杜全斌, 龙伟民, 路全斌, 等. 钎料表面微结构对糊状钎剂粘附性的影响[J]. 焊接学报, 2017, 38 (2): 37- 40.
8 DU Q B , LONG W M , LU Q B , et al. Effect of surface microstructure on adhesive ability of flux suspension[J]. Transactions of the China Welding Institution, 2017, 38 (2): 37- 40.
9 冯晓娟, 石彦龙, 杨武. 材料表面的润湿性[J]. 化学通报, 2014, 77 (5): 418- 424.
9 FENG X J , SHI Y L , YANG W . Wettability of material surface[J]. Chemical Bulletin, 2014, 77 (5): 418- 424.
10 EXTRAND C W , KUMAGAI Y . An experimental study of contact angle hysteresis[J]. Journal of Colloid and Interface Science, 1997, 191 (2): 378- 383.
doi: 10.1006/jcis.1997.4935
11 王晓东, 彭晓峰, 闵敬春, 等. 接触角滞后现象的理论分析[J]. 工程热物理学报, 2002, 23 (1): 67- 70.
11 WANG X D , PENG X F , MIN J C , et al. Hysteresis of contact angle at liquid-solid interface[J]. Journal of Engineering Thermophysics, 2002, 32 (1): 67- 70.
12 陈建勋, 赵兴科, 刘大勇, 等. 电子封装用SnAgCu系无铅钎料的研究进展[J]. 材料工程, 2013, (9): 91- 97.
12 CHEN J X , ZHAO X K , LIU D Y , et al. Research development of SnAgCu system lead-free solders in electronics packing[J]. Journal of Materials Engineering, 2013, (9): 91- 97.
13 PROMRAKSA A , CHEN L J . Modeling contact angle hysteresis of a liquid droplet sitting on a cosine wave-like pattern surface[J]. Journal of Colloid and Interface Science, 2012, 384 (1): 172- 181.
doi: 10.1016/j.jcis.2012.06.064
14 WANG X D , PENG X F , MIN J C , et al. Hysteresis of contact angle at liquid-solid surface[J]. Journal of Basic Science and Engineering, 2001, 9 (4): 343- 353.
15 WANG X D , PENG X F , LEE D J . Dynamic wetting and stress singularity on the contact line[J]. Science in China E, 2003, 46 (4): 407- 417.
doi: 10.1360/02ye0407
16 JUNG Y C , BHUSHAN B . Wetting behaviour during evaporation and condensation of water microdroplets on superhydrophobic patterned surfaces[J]. Journal of Microscopy, 2008, 229 (1): 127- 140.
doi: 10.1111/jmi.2008.229.issue-1
17 ZHONG Y F , JACOBI A M , GEORGIADIS J G , et al. Effects of surface chemistry and groove geometry on wetting characteristics and droplet motion of water condensate on surfaces with rectangular microgrooves[J]. International Journal of Heat and Mass Transfer, 2013, 57, 629- 641.
doi: 10.1016/j.ijheatmasstransfer.2012.10.056
[1] 高晔, 姜卓钰, 周怡然, 吕晓旭, 宋伟, 焦健. 正交铺层PIP-SiCf/SiC复合材料的水淬失效行为[J]. 材料工程, 2022, 50(3): 166-172.
[2] 李虎, 范王腾飞, 王敏涓, 黄旭, 黄浩. SiCf/TC17复合材料界面剪切强度测试与有限元分析[J]. 材料工程, 2021, 49(1): 160-167.
[3] 朱国伟, 李宏岩, 许云志, 张晓军. PNF增韧层对CFRP复合材料分层影响的数值分析[J]. 材料工程, 2019, 47(10): 148-153.
[4] 何培龙, 程方杰, 肖兵, 赵欢. 添加Ge元素对CsF-AlF3钎剂熔化特性、物相结构及铺展性能的影响[J]. 材料工程, 2018, 46(4): 99-103.
[5] 程方杰, 齐书梅, 杨振文, 姚俊峰, 赵欢. 铝合金中温自反应钎焊机理的研究[J]. 材料工程, 2018, 46(1): 31-36.
[6] 强斌, 刘宇杰, 阚前华. 粘接界面泡沫铝夹芯板的三点弯曲失效数值模拟[J]. 材料工程, 2014, 0(11): 97-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn