激光熔化镁合金凝固组织及腐蚀行为
Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (12): 1-9    DOI: 10.11868/j.issn.1001-4381.2016.000070
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
激光熔化镁合金凝固组织及腐蚀行为
方志浩1,2, 马程鹏2, 管迎春2,3,4,5, 周伟4, 郑宏宇5
1. 北京航空航天大学 能源与动力工程学院, 北京 100191;
2. 北京航空航天大学 机械工程与自动化学院, 北京 100191;
3. 北京航空航天大学 国际交叉研究院, 北京 100191;
4. 南洋理工大学 机械宇航学院, 新加坡 639798;
5. 新加坡制造技术研究院, 新加坡 638075
Solidified Structure and Corrosion Behavior of Laser-melt Magnesium Alloy
FANG Zhi-hao1,2, MA Cheng-peng2, GUAN Ying-chun2,3,4,5, ZHOU Wei4, ZHENG Hong-yu5
1. School of Energy and Power Engineering, Beihang University, Beijing 100191, China;
2. School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China;
3. International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, China;
4. School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798;
5. Singapore Institute of Manufacturing Technology, Singapore 638075
全文: PDF(5435 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用Nd:YAG毫秒脉冲激光器,在高纯氩气保护下扫描AZ91D镁合金样品,采用X射线衍射仪(XRD),光学显微镜,扫描电镜(SEM),原子力显微镜(AFM)等对处理后镁合金表面形貌、组织、成分进行研究。使用模拟改性体液和质量分数为3.5%的NaCl溶液对实验样品进行腐蚀,观察腐蚀表面并计算材料腐蚀率。结果表明:在相同腐蚀时间下,与未被处理样品相比,激光处理后镁合金由于其显微组织中细化的α-Mg相与β-Mg17Al12相,及选择性气化现象和基体合金化学成分共同导致表面Al元素富集提高了表层的抗腐蚀性能;通过测算激光熔化区枝晶晶胞尺寸与冷却速率的关系得到其凝固方程。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
方志浩
马程鹏
管迎春
周伟
郑宏宇
关键词 激光加工镁合金微观组织耐蚀性    
Abstract:The AZ91D magnesium alloy samples were scanned by millisecond pulse Nd:YAG laser under high pure argon protection. The surface morphology, microstructure and composition of the treated magnesium alloy were studied by X-ray diffraction, optical microscopy, scanning electron microscopy, atomic force microscopy. In addition, the corrosion surface which was corroded using simulated body fluid and the mass fraction of 3.5%NaCl solution was observed and material corrosion rate was calculated. The results show that, at the same corrosion time, compared with the untreated samples, the surface corrosion resistance is improved by the enrichment of Al at the irradiated surface by the joint effect of the combination of refined homogeneous microstructure of α-Mg phase and β-Mg17Al12 phase and the selective vaporization and the chemical composition of base metal in the laser-treated AZ91D alloy; the solidification equation is obtained by calculating the relation between the size of the dendrite cell and the cooling rate in laser melting zone.
Key wordslaser processing    magnesium alloy    microstructure    corrosion resistance
收稿日期: 2016-01-15      出版日期: 2017-12-19
中图分类号:  TN24  
  TG146.2+2  
通讯作者: 管迎春(1983-),女,教授,博士,主要从事激光加工和成形等技术的研究工作,E-mail:guanyingchun@buaa.edu.cn     E-mail: guanyingchun@buaa.edu.cn
引用本文:   
方志浩, 马程鹏, 管迎春, 周伟, 郑宏宇. 激光熔化镁合金凝固组织及腐蚀行为[J]. 材料工程, 2017, 45(12): 1-9.
FANG Zhi-hao, MA Cheng-peng, GUAN Ying-chun, ZHOU Wei, ZHENG Hong-yu. Solidified Structure and Corrosion Behavior of Laser-melt Magnesium Alloy. Journal of Materials Engineering, 2017, 45(12): 1-9.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000070      或      http://jme.biam.ac.cn/CN/Y2017/V45/I12/1
[1] KUTZ M.Handbook of materials selection[M].USA:John Wiley & Sons,Inc,2002:259-267.
[2] AMBAT R,AUNG N N,ZHOU W.Studies on the influence of chloride ion and pH on the corrosion and electrochemical behaviour of AZ91D magnesium alloy[J].Journal of Applied Electrochemistry,2000,30(7):865-874.
[3] BALLERINI G,BARDI U,BIGNUCOLO R,et al.About some corrosion mechanisms of AZ91D magnesium alloy[J].Corrosion Science,2005,47(9):2173-2184.
[4] KANNAN M B,RAMAN R K.In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid[J].Biomaterial,2008,29(15):2306-2314.
[5] WITTE F.The history of biodegradable magnesium implants:a review[J].Acta Biomaterialia,2010,6(5):1680-1692.
[6] STEEN W M."Light" industry:an introduction to laser processing and its industrial application[C]//Advances in Laser Materials Processing.Woodhead Publishing Limited:CRC Press,2010:3-17.
[7] 冉先喆,程昊,王华明,等.激光熔化沉积AerMet100耐蚀超高强度钢的耐蚀性[J].材料热处理学报,2012,33(12):126-131. RAN X Z,CHENG H,WANG H M,et al.Corrosion properties of laser melting-deposited corrosion-resistant ultrahigh strength steel AerMet100[J].Transactions of Materials and Heat Treatment,2012,33(12):126-131.
[8] 王勇,蒋军杰,乔丽英,等.选区激光熔化TC4生物腐蚀和生物相容性分析[J].重庆大学学报,2015(3):21-27. WANG Y,JIANG J J,QIAO L Y,et al.Study on biological corrosion and biocompatibility of TC4 alloy by selective laser melting[J].Journal of Chongqing University,2015(3):21-27.
[9] 刘欢,罗立平,王丁丁,等.激光重熔对金属陶瓷Mo-ZrO2组织和耐蚀性能的影响[J].中国表面工程,2015(5):93-99. LIU H,LUO L P,WANG D D,et al.Effect of laser remelting on microstructure and properties of Mo-ZrO2 cermet[J].China Surface Engineering,2015(5):93-99.
[10] KWORK C T,LEONG K I,CHENG F T.et al.Microstructural and corrosion characteristics of laser surface-melted plastics mold steels[J].Materials Science & Engineering:A,2003,357(1):94-103.
[11] KWORK C T,LEONG K I,CHENG F T.et al.Microstructure and corrosion behavior of laser surface-melted high-speed steels[J].Surface & Coatings Technology,2007,202(2):336-348.
[12] GUAN Y C,LUO F F,LIM G C,et al.Fabrication of metallic surfaces with long-term superhydrophilic property using one-stop laser method[J].Materials & Design,2015,78:19-24.
[13] GUAN Y C,ZHOU W,LI Z L,et al.Influence of overlapping tracks on microstructure evolution and corrosion behavior in laser-melt magnesium alloy[J].Materials & Design,2013,52:452-458.
[14] BASU A,SAMANT A N,HARIMKAR S P,et al.Laser surface coating of Fe-Cr-Mo-Y-B-C bulk metallic glass composition on AlSi 4140 steel[J].Surface and Coatings Technology,2008,202(12):2623-2631.
[15] BRANDES E A.Smithells metals reference book[M].8th ed.London & Boston:Butterworth-Heinemann,1998.
[16] WEI P S,TING C N,YEH J S,et al.Origin of wavy weld boundary[J].Journal of Applied Physics,2009,105(5):053508-8.
[17] KURZ W,FISHER D J.Fundamentals of solidification[M].Lausanne:Trans Tech Publications,1998:97-107.
[18] HARIMKAR S P,SAMANT A N,KHANGAR A A,et al.Prediction of solidification microstructures during laser dressing of alumina-based grinding wheel material[J].Journal of Physics D:Applied Physics,2008,39(8):1642-1649.
[19] STEFANESCU D M,RUXANDA R.Fundamentals of solidification[M].9th ed.OH,USA:ASM International,2004:71-92.
[20] LIU Z,CHONG P H,SKELDON P,et al.Fundamental understanding of the corrosion performance of laser-melted metallic alloys[J].Surface & Coatings Technology,2006,200(18-19):5514-5525.
[21] WANG Y,LIU G,FAN Z.Microstructural evolution of rheo-diecast AZ91D magnesium alloy during heat treatment[J].Acta Materialia,2006,54(3):689-699.
[22] ZHANG W Z,WEATHERLY G C.On the crystallography of precipitation[J].Progress Material Science,2005,50(2):181-292.
[23] LIU Y C,SHI Q Z,YANG G C,et al.Preparation of metastable phase materials and nucleation and growth kinetics considerations[J].Materials Letters,2005,59(7):813-816.
[24] CAO X,WALLACE W,POON C,et al.Research and progress in laser welding of wrought aluminum alloys[J].Materials and Manufacturing Processes,2003,18(1):1-22.
[25] ASHBY M F,JONES D R.Engineering materials 2:an introduction to microstructures,processing and design[M].4th ed.Amsterdam:Elsevier,2014:39.
[26] HE X,NORRIS J T,FUERSCHBACH P W,et al.Liquid metal expulsion during laser spot welding of 304 stainless steel[J].Journal of Physics D:Applied Physics,2006,39(3):525-534.
[1] 李晓燕, 卢雅琳, 王健, 周东帅, 杨林. 稀土Er对A356铝合金微观组织和力学性能的影响[J]. 材料工程, 2018, 46(1): 67-73.
[2] 游国强, 郭伟, 张秀丽, 文恒玉, 沈鹭. 镁合金摩擦焊的研究进展[J]. 材料工程, 2018, 46(1): 141-148.
[3] 熊俊杰, 闫洪. Al-Ti体系原位合成Al3Ti/ADC12复合材料[J]. 材料工程, 2017, 45(8): 30-37.
[4] 陈高红, 胡远森, 于美, 刘建华, 李国爱. 包铝层和氧化时间对2E12铝合金硫酸阳极氧化及膜层性能的影响[J]. 材料工程, 2017, 45(7): 19-26.
[5] 孙颖迪, 陈秋荣. AZ31镁合金管材挤压成型数值模拟与实验研究[J]. 材料工程, 2017, 45(6): 1-7.
[6] 樊振中, 熊艳才, 陆政, 孙刚, 王胜强. Al-7Sn-1.1Ni-Cu-0.2Ti轴承合金微观组织与力学性能[J]. 材料工程, 2017, 45(6): 8-16.
[7] 刘占勇, 左孝青, 钟子龙, 李威威. 半固态触变挤压对ZA27合金组织和力学性能的影响[J]. 材料工程, 2017, 45(6): 17-23.
[8] 蒋晓, 郭瑞光, 唐长斌. 硬脂酸改性镁合金铈钒转化膜的制备与性能[J]. 材料工程, 2017, 45(5): 13-19.
[9] 韩素琦, 刘胜胆, 李承波, 雷越, 邓运来, 张新明. 淬火速率对Al-Zn-Mg-Cu-Cr合金挤压棒材组织及硬度的影响[J]. 材料工程, 2017, 45(4): 9-14.
[10] 赵曦, 贾瑞灵, 周伟光, 郭锋. 稀土对AZ91镁合金干/湿循环腐蚀产物及阻抗行为的影响[J]. 材料工程, 2017, 45(4): 41-50.
[11] 李佳, 盛光敏, 黄利. Ti/Nb作中间层脉冲加压扩散连接TiC金属陶瓷与不锈钢[J]. 材料工程, 2017, 45(3): 54-59.
[12] 黄丹, 朱志华, 耿海滨, 熊江涛, 李京龙, 张赋升. 5A06铝合金TIG丝材-电弧增材制造工艺[J]. 材料工程, 2017, 45(3): 66-72.
[13] 崔斌, 杨柳, 邓运来, 谭军, 张骞, 王婷. 添加元素对Mg-3Si合金组织影响[J]. 材料工程, 2017, 45(3): 95-101.
[14] 李贺, 柴丽华, 马腾飞, 陈子勇. 高温熔体反应法制备Al-5Ti-1B细化剂[J]. 材料工程, 2017, 45(2): 39-45.
[15] 乔及森, 向阳芷, 聂书才, 张涵. 铝镁异种金属复合挤压成形及界面微观组织[J]. 材料工程, 2017, 45(11): 78-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部       总访问数: 
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn