Progress in Effect of Nano-modified Coatings and Welding Process Parameters on Wear of Contact Tube for Non-copper Coated Solid Wires
Zhuo-xin LI1,*(), Qian WAN1, Tian-li ZHANG1, Wolfgang TILLMAN2
1 College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China 2 Institute of Materials Engineering, Dortmund University of Technology, Dortmund 24427, Germany
Environment-friendly non-copper coated solid wire is the main developing trend for gas shielded solid wires, whereas wear of contact tube limits their wide application. The effect of nano-modified coatings and welding process parameters on wear of contact tube for non-copper coated solid wires was reviewed. It was found that the wear of contact tube can be reduced due to the formation of tribo-films on the rubbing surfaces of welding wires against contact tube; it is feasible to decrease contact tube wear when non-copper coated solid wires are coated with nano-modified lubricants, thereby displaying excellent lubricating and thermal or electrical conduction characteristics. The wear of contact tube increases with the increase of welding current. The wear of contact tube is worse in direct-current electrode positive (DCEP) than in direct-current electrode negative (DCEN). Arc ablation and electrical erosion are the dominant wear mechanisms of contact tube.
栗卓新, 万千, 张天理, TILLMANWolfgang. 纳米改性涂层及焊接工艺参数对无镀铜实心焊丝导电嘴磨损影响的研究进展[J]. 材料工程, 2017, 45(12): 135-146.
Zhuo-xin LI, Qian WAN, Tian-li ZHANG, Wolfgang TILLMAN. Progress in Effect of Nano-modified Coatings and Welding Process Parameters on Wear of Contact Tube for Non-copper Coated Solid Wires. Journal of Materials Engineering, 2017, 45(12): 135-146.
DÁNIEL K, LEVENTE N. Investigation of the contact and wear of the welding wire and MIG-welding contact Tips[C]//KÁROLY J.Design, fabrication and economy of metal structures, International Conference Proceedings 2013. Heidelberg:Springer, 2013:489-494.
MIYAZAKI K . Environmental modification from aspect of welding materials[J]. Welding International, 2008, 22 (8): 491- 496.
doi: 10.1080/09507110802341061
5
FRANK T , BRUNO S , ESAB G , et al. Trouble-free MAG-welding with OK Aristorod bare welding wire[J]. SVETSAREN-the ESAB Welding and Cutting Journal, 2005, 60 (2): 25- 27.
6
王洋娜. 无镀铜焊丝的表面功能化处理[D]. 天津: 天津大学, 2011.
6
WANG Y N. Surface functionalization processing of non-copper plating wire[D]. Tianjin:Tianjin University, 2011.
7
闫亮. 钢焊丝表面纳米复合涂层的工艺及性能研究[D]. 天津: 河北工业大学, 2014.
7
YAN L. Study on nano-composite coating process and performance for steel wire surface[D]. Tianjin:Hebei University of Technology, 2014.
CAO X T. Study on influence of surface-treatment on contact tip wear and rust resistance of non-copper coated solid wire[D]. Beijing:Beijing University of Technology, 2017.
9
张亮. 高强钢无镀铜焊丝表面处理方法与机理研究[D]. 镇江: 江苏科技大学, 2013.
9
ZHANG L. The research of high strength steel non-copper solid wire's surface treatments and mechanism[D]. Zhenjiang:Jiangsu University of Science and Technology, 2013.
10
周胜. 基于纳米WS2/MoS2的润滑油摩擦学性能实验研究[D]. 长沙: 中南大学, 2012.
10
ZHOU S. Experimental study on tribological properties of lubrication based on WS2/MoS2 complex nanoparticles[D]. Changsha:Central South University, 2012.
11
SU Y , GONG L , CHEN D D . Dispersion stability and thermophysical properties of environmentally friendly graphite oil-based nanofluids used in machining[J]. Advances in Mechanical Engineering, 2016, 8 (1): 1- 11.
12
MALLAKPOURA S , MADANIA M . A review of current coupling agents for modification of metal oxide nanoparticles[J]. Progress in Organic Coatings, 2015, 86, 194- 207.
doi: 10.1016/j.porgcoat.2015.05.023
13
ZHAO J , MILANOVA M , MARIJN M C G , et al. Surface modification of TiO2 nanoparticles with silane coupling agents[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2012, 413, 273- 279.
doi: 10.1016/j.colsurfa.2011.11.033
CHEN Q. Performance of CuO/Al2O3 composite nanoparticles as lubricant oil additive[D]. Jinan:University of Jinan, 2013.
15
KANG T , JANG I , OH S G . Surface modification of silica nanoparticles using phenyl trimethoxysilane and their dispersion stability in N-methyl-2-pyrrolidone[J]. Colloids and Surfaces A:physicochem Engineering Aspects, 2016, 501, 24- 31.
doi: 10.1016/j.colsurfa.2016.04.060
LIU Y S , WANG H Y , YANG J W . Dispersion of nano-SiO2 modified silane coupling agent[J]. Development and Application of Materials, 2014, 29 (3): 56- 60.
17
DAI W , KHEIREDDIN B , GAO H , et al. Roles of nanoparticles in oil lubrication[J]. Tribology International, 2016, 102, 88- 98.
doi: 10.1016/j.triboint.2016.05.020
18
HU C Z , BAI M L , LV J Z . Molecular dynamics investigation of the effect of copper nanoparticle on the solid contact between friction surfaces[J]. Applied Surface Science, 2014, 321, 302- 309.
doi: 10.1016/j.apsusc.2014.10.006
19
WANG X L , YIN Y L , ZHANG G N , et al. Study on antiwear and repairing performances about mass of nano-copper lubricating additives to 45 steel[J]. Physics Procedia, 2013, 50, 466- 472.
doi: 10.1016/j.phpro.2013.11.073
XU Y , NAN F , XU B S . Tribological properties of attapulgite/oil-soluble nano-Cu composite lubricating additive[J]. Journal of Materials Engineering, 2016, 44 (10): 41- 46.
doi: 10.11868/j.issn.1001-4381.2016.10.006
21
JATTI V S , SINGH T P . Copper oxide nano-particles as friction-reduction and anti-wear additives in lubricating oil[J]. Journal of Mechanical Science and Technology, 2015, 29 (2): 793- 798.
doi: 10.1007/s12206-015-0141-y
22
GHAEDNIA H , JACKSON R , KHODADADI J M . Experimental analysis of stable CuO nanoparticle enhanced lubricants[J]. Journal of Experimental Nanoscience, 2015, 10 (1): 1- 18.
doi: 10.1080/17458080.2013.778424
23
PADMINI R , KRISHNA P V , RAO G K M . Effectiveness of vegetable oil based nanofluids as potential cutting fluids in turning AISI 1040 steel[J]. Tribology International, 2016, 94, 490- 501.
doi: 10.1016/j.triboint.2015.10.006
24
ALDANA P U , VACHER B , MOGNE T L , et al. Action mechanism of WS2 nanoparticles with ZDDP additive in boundary lubrication regime[J]. Tribol Lett, 2014, 56, 249- 258.
doi: 10.1007/s11249-014-0405-1
25
GU Y, ZHAO X C, LIU Y, et al. Preparation and tribological properties of dual-coated TiO2 nanoparticles as water-based lubricant additives[J/OL]. Journal of Nanomaterials, 2014.[2016-10-07]. http://dx.doi.org/10.1155/2014/785680.
26
ARUMUGAM S , SRIRAM G . Preliminary study of nano-and microscale TiO2 additives on tribological behavior of chemically modified rapeseed oil[J]. Tribology Transactions, 2013, 56 (5): 97- 805.
27
HOU X , HE J , YU L G , et al. Preparation and tribological properties of fluoro silane surface-modified lanthanum trifluoride nanoparticles as additive of fluoro silicone oil[J]. Applied Surface Science, 2014, 316, 515- 523.
doi: 10.1016/j.apsusc.2014.07.171
28
SHEN T J , WANG D X , YUN J , et al. Tribological properties and tribochemical analysis of nano-cerium oxide and sulfurized isobutene in titanium complex grease[J]. Tribology International, 2016, 93, 332- 346.
doi: 10.1016/j.triboint.2015.09.028
29
GU C X , LI Q Z , GU Z M , et al. Study on application of CeO2 and CaCO3 nanoparticles in lubricating oils[J]. Journal of Rare Earths, 2008, 26 (2): 163- 167.
doi: 10.1016/S1002-0721(08)60058-7
30
LIJESH K P , MUZAKKIR S M , HIRANI H . Experimental tribological performance evaluation of nano lubricant using multi-walled carbon nano-tubes (MWCNT)[J]. International Journal of Applied Engineering Research, 2015, 10 (6): 14543- 14551.
31
GE X Y , XIA Y Q , FENG X . Influence of carbon nanotubes on conductive capacity and tribological characteristics of poly(ethylene Glycol-Ran-Propylene Glycol) monobutyl ether as base oil of grease[J]. Journal of Tribology, 2015, 138 (1): 011801- 011801.
doi: 10.1115/1.4031232
32
MOHAMED A , OSMAN T A , KHATTAB A , et al. Tribological behavior of carbon nanotubes as an additive on lithium grease[J]. Journal of Tribology, 2014, 137 (1): 011801- 011801.
doi: 10.1115/1.4028225
33
KAMEL B M , MOHAMED A , SHERBINY M E , et al. Tribological behaviour of calcium grease containing carbon nanotubes additives[J]. Industrial Lubrication and Tribology, 2016, 68 (6): 723- 728.
doi: 10.1108/ILT-12-2015-0193
34
TEVET O. Mechanical and tribological properties of inorganic fullerene-like (IF) nanoparticles[D]. Rehovot:Weizmann Institute of Science, 2011.
35
SHIRVANI K A. Nanopolishing by nanofluids in elastohydrodynamic lubrication (EHL)[D]. Washington D C:Howard University, 2015.
36
MARKO M D. The tribological effects of lubricating oil containing nanometer-scale diamond particles[D]. Columbia:Columbia University, 2015.
37
COL M N , CELIK O N , SERT A . Tribological behaviours of lubricating oils with CNT and Si3N4 nanoparticle additives[J]. Archives of Materials Science and Engineering, 2014, 67 (2): 53- 59.
38
SAHIN Y B , CELIK O N , BURNAK N , et al. Modeling and analysis of the effects of nano-oil additives on wear properties of AISI 4140 steel material using mixture design[J]. Journal of Engineering Tribology, 2016, 230 (4): 442- 451.
TAO J M , HONG P , CHEN X F , et al. Research progress on carbon nanotubes reinforced Cu-matrix composites[J]. Journal of Materials Engineering, 2017, 45 (4): 128- 136.
doi: 10.11868/j.issn.1001-4381.2016.000315
DAI L F , AN L B , CHEN J . Progress on research of contact resistance of carbon nanotubes[J]. Journal of Aeronautical Materials, 2016, 36 (5): 90- 96.
doi: 10.11868/j.issn.1005-5053.2016.5.015
41
HONG H P , THOMAS D , WAYNICK A , et al. Carbon nanotube grease with enhanced thermal and electrical conductivities[J]. J Nanopart Res, 2010, 12, 529- 535.
doi: 10.1007/s11051-009-9803-y
42
GE X Y , XIA Y Q , SHU Z Y , et al. Conductive grease synthesized using nanometer ATO as an additive[J]. Friction, 2015, 3 (1): 56- 64.
doi: 10.1007/s40544-015-0073-7
LIU C , XIA Y Q , CAO Z F . Conductivity and tribological properties of carbon nanotubes in grease[J]. Tribology, 2015, 5 (4): 393- 397.
44
ZAWRAH M F , KHATTAB R M , GIRGIS L G , et al. Stability and electrical conductivity of water-base Al2O3 nanofluids for different applications[J]. Housing and Building National Research Center Journal, 2016, 12, 227- 234.
45
SAROJINI K G K , MANOJ S V , SINGH P K , et al. Electrical conductivity of ceramic and metallic nanofluids[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2013, 417, 39- 46.
46
SHIMIZU H , YOKOTA Y , MIZUNO M , et al. Wear mechanism in contact tube[J]. Science and Technology of Welding and Joining, 2006, 11 (1): 94- 105.
doi: 10.1179/174329306X77885
47
LOPEZ L A , PEREZ G Y , GARCIA F J , et al. Study of GMAW process parameters on the mechanisms of wear in contact tips C12200 alloy[J]. MRS Proceedings, 2015, 1766, 53- 62.
doi: 10.1557/opl.2015.412
48
XIONG X Z , TU C J , CHEN D , et al. Arc erosion wear characteristics and mechanisms of pure carbon strip against copper under arcing conditions[J]. Tribol Lett, 2014, 53, 293- 301.
doi: 10.1007/s11249-013-0267-y
49
FADIN V V, ALEUTDINOVA M I, RUBTSOV V Y. About wear and average surface temperature of copper or steel contacts at sliding current collection[C]//Advanced materials with hierarchical structure for new technologies and reliable structures. Tomsk:AIP Publishing, 2015, 020051-1-020051-4. http://dx.doi.org/10.1063/1.4932741.
50
JIANG H F , ZHANG Q , SHI L . Effective thermal conductivity of carbon nanotube-based nanofluid[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 55, 76- 81.
doi: 10.1016/j.jtice.2015.03.037
51
GOU Y J , LIU Z L , ZHANG G M , et al. Effects of multi-walled carbon nanotubes addition on thermal properties of thermal grease[J]. International Journal of Heat and Mass Transfer, 2014, 74, 358- 367.
doi: 10.1016/j.ijheatmasstransfer.2014.03.009
52
CHEN H Y , WEI H X , CHEN M H , et al. Enhancing the effectiveness of silicone thermal grease by the addition of functionalized carbon nanotubes[J]. Applied Surface Science, 2013, 283, 525- 531.
doi: 10.1016/j.apsusc.2013.06.139
53
XU W , HU R , LI J S , et al. Effect of electrical current on tribological property of Cu matrix composite reinforced by carbon nanotubes[J]. Transactions of Nonferrous Metals Society of China, 2011, 21, 2237- 2241.
doi: 10.1016/S1003-6326(11)61001-7
54
GUAN B S , ZHANG Y Z , XING J D , et al. Study of the friction and wear of electrified copper against copper alloy under dry or moist conditions[J]. Tribology Transactions, 2010, 53 (6): 927- 932.
doi: 10.1080/10402004.2010.510621
55
XIE G X , GUO D , LUO J B . Lubrication under charged conditions[J]. Tribilogy International, 2015, 84, 22- 35.
doi: 10.1016/j.triboint.2014.11.018
56
CHIOU Y C , LEE R T , LIN S M . Formation mechanism of electrical damage on sliding lubricated contacts for steel pair under DC electric field[J]. Wear, 2009, 266, 110- 118.
doi: 10.1016/j.wear.2008.06.001
57
杨正海. 载流摩擦副的电弧损伤机制研究[D]. 北京: 机械科学研究总院, 2015.
57
YANG Z H. Research on the arcing damage mechanism of triboelectric pairs[D]. Beijing:China Academy of Machinery Science and Technology, 2015.
WANG Y A , LI J X , QIAO L J . Effects of electrical current and its polarity on the properties of friction and wear of copper-impregnated metallized carbon[J]. Acta Metallurgica Sinica, 2012, 48 (4): 480- 484.
59
YANG X Y , MENG Y G , TIAN Y . Potential-controlled boundary lubrication of stainless steels in non-aqueous sodium dodecyl sulfate solutions[J]. Tribol Lett, 2014, 53, 17- 26.
doi: 10.1007/s11249-013-0240-9
60
YANG X Y , MENG Y G , TIAN Y . Effect of imidazolium ionic liquid additives on lubrication performance of propylene carbonate under different electrical potentials[J]. Tribol Lett, 2014, 56, 161- 169.
doi: 10.1007/s11249-014-0394-0
61
BARES J A , ARGIBAY N , MAUNTLER N , et al. High current density copper-on-copper sliding electrical contacts at low sliding velocities[J]. Wear, 2009, 267, 417- 424.
doi: 10.1016/j.wear.2008.12.062
62
IGOR V , FLORIAN A , STEFAN K , et al. The effect of gaseous atmospheres on friction and wear of steel-steel contacts[J]. Tribology International, 2014, 79, 99- 110.
doi: 10.1016/j.triboint.2014.05.027
63
IGOR V , FLORIAN A , STEFAN K , et al. The influence of temperature on friction and wear of unlubricated steel/steel contacts in different gaseous atmospheres[J]. Tribology International, 2016, 98, 155- 171.
doi: 10.1016/j.triboint.2016.02.022
64
CHOUBEILA B , ALI B , HAMID Z . Tribological analysis of formation and rupture of oxide films in an electrical sliding contact copper-steel[J]. Study of Civil Engineering and Architecture (SCEA), 2014, 3, 54- 58.
65
BARTHEL A J , AZIZI A A , SURDYKA N D , et al. Effects of gas or vapor adsorption on adhesion, friction, and wear of solid interfaces[J]. Langmuir, 2014, 30, 2977- 2992.
doi: 10.1021/la402856j
66
HIRATSUKA K , MEKI Y . The effects of non-friction time and atmosphere in friction/non-friction areas on the wear of metals[J]. Wear, 2011, 270, 446- 454.
doi: 10.1016/j.wear.2010.12.004
67
TEVFIK K , LEVENT K . The friction and wear properties of CuZn39Pb3 alloys under atmospheric and vacuum conditions[J]. Wear, 2014, 309, 21- 28.
doi: 10.1016/j.wear.2013.10.003