Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (2): 32-38    DOI: 10.11868/j.issn.1001-4381.2015.000579
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
多层金属复合板的热轧制备方法
余伟, 王班, 贺婕, 徐士新, 雷力齐
北京科技大学 冶金工程研究院, 北京 100083
Hot-rolled Process of Multilayered Composite Metal Plate
YU Wei, WANG Ban, HE Jie, XU Shi-xin, LEI Li-qi
Engineering Research Institute, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(4281 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 提高成材率和复合界面质量是制备多层复合板的难题。本工作提出一种多层复合板的高成材率热轧制备方法,即采用氩弧焊固定各层原料板组成坯料,坯料放入金属套后抽真空,再加热到1000~1200℃进行多道次轧制,成功制备出2.5mm厚的67层复合板。通过金相显微镜及电子显微镜观察和分析了界面组织及元素扩散行为,采用拉伸、剪切实验测定复合板的力学性能,并分析其剪切断口。结果表明:采用两步组坯复合和工艺优化,多层复合板的轧制成材率达90%以上。多层复合板具有良好的结合界面,其抗剪强度达到241MPa。9Cr18和1Cr17镍中间层可以较为有效地阻碍界面附近的碳扩散并改善复合板的组织特征。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余伟
王班
贺婕
徐士新
雷力齐
关键词 多层金属复合板热轧工艺组织力学性能扩散    
Abstract:For multi-layer plate, it is a difficult problem to increase product yield rate and improve bonding interface quality. A high yield hot-rolled method of multilayered plate was proposed. The raw strips and plate were fixed by argon arc welding. The combined billet was put into a metal box and vacuum pumped, and then heated and rolled by multi passes at the temperature of 1000-1200℃. The 67 layered plate with the thickness of 2.5mm was successfully produced. The interfacial microstructures and diffusion behavior were investigated and analyzed by optical microscopy and scan electronic microscopy. The tensile and shear strength were tested,and the shear fractures were analyzed. The results show that the multilayered plate yield rate is more than 90% by two steps billet combination method and rolling process optimization. The good bonding interface quality is obtained, the shear strength of multilayered plate reaches 241 MPa. Nickel interlayer between 9Cr18 and 1Cr17 can not only prevent the diffusion of carbon, but also improve the microstructure characteristics.
Key wordsmultilayered plate    hot-rolled process    microstructure    mechanical property    diffusion
收稿日期: 2015-05-11      出版日期: 2017-02-23
中图分类号:  TG335.8  
通讯作者: 余伟(1968-),男,副研究员,博士,从事材料组织性能控制及金属复合材料制备研究,联系地址:北京科技大学冶金工程研究院(100083),yuwei@nercar.ustb.edu.cn     E-mail: yuwei@nercar.ustb.edu.cn
引用本文:   
余伟, 王班, 贺婕, 徐士新, 雷力齐. 多层金属复合板的热轧制备方法[J]. 材料工程, 2017, 45(2): 32-38.
YU Wei, WANG Ban, HE Jie, XU Shi-xin, LEI Li-qi. Hot-rolled Process of Multilayered Composite Metal Plate. Journal of Materials Engineering, 2017, 45(2): 32-38.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.000579      或      http://jme.biam.ac.cn/CN/Y2017/V45/I2/32
[1] 刘靖, 韩静涛, 杨忠慧, 等. 1Cr17/9Cr18MoV 多层复合钢板的组织与性能[J]. 材料科学与工程学报, 2012, 30(3):329-332. LIU J, HAN J T, YANG Z H, et al. Microstructure and performance of multi-layer 1Cr17/9Cr18MoV composite steel plate[J]. Journal of Materials Science and Engineering, 2012, 30(3):329-332.
[2] 张兵, 王快社, 孙院军, 等. Cu/Mo/Cu 轧制复合界面的结合特性[J]. 中国有色金属学报, 2011, 21(9):2163-2167. ZHANG B, WANG K S, SUN Y J, et al. Bonding property of Cu/Mo/Cu cladding metal materials by hot rolling[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(9):2163-2167.
[3] PALMER T A, ELMER J W, BRASHER D, et al. Development of an explosive welding process for producing high-strength welds between niobium and 6061-T651 aluminum[J]. Welding Journal, 2006,85(11):252-263.
[4] YUE X, HE P, FENG J C, et al. Microstructure and interfacial reactions of vacuum brazing titanium alloy to stainless steel using an AgCuTi filler metal[J]. Materials Characterization, 2008, 59(12):1721-1727.
[5] ISLAM M F, RIDLEY N. Characterisation of diffusion bonds formed between Ti-6Al-4V and titanium aluminide super Alpha-2[J]. Materials Science and Technology, 1996, 12(8):623-627.
[6] 刘建彬,韩静涛,解国良,等.离心浇铸挤压复合钢管界面组织与性能[J].工程科学学报,2008,(11):1255-1259. LIU J B, HAN J T, XIE G L, et al. Interfacial microstructure and properties of clad steel pipes by centrifugal casting and extruding[J]. Chinese Journal of Engineering, 2008,(11):1255-1259.
[7] 董成文, 李艳芳, 任学平. TA1/Q235 钢复合板累积叠轧焊界面特性[J]. 工程科学学报, 2008, (3):249-253. DONG C W, LI Y F, REN X P. Joint interface characteristics of TA1/Q235 clad plates manufactured by accumulative roll-bonding[J]. Chinese Journal of Engineering, 2008, (3):249-253.
[8] KUNDU S,GHOSH M,LAIK A,et al. Diffusion bonding of commercially pure titanium to 304 stainless steel using copper interlayer[J]. Materials Science and Engineering:A, 2005, 407(1-2):154-160.
[9] KATO H, ABE S, TOMIZAWA T. Interfacial structures and mechanical properties of steel-Ni and steel-Ti diffusion bonds[J]. Journal of Materials Science, 1997, 32(19):5225-5232.
[10] KUNDU S, CHATTERJEE S. Interfacial microstructure and mechanical properties of diffusion-bonded titanium-stainless steel joints using a nickel interlayer[J]. Materials Science and Engineering:A, 2006, 425(1-2):107-113.
[11] KUNDU S,CHATTERJEE S. Effects of temperature on interface microstructure and strength properties of titanium-niobium stainless steel diffusion bonded joints[J]. Materials Science and Technology, 2011, 27(7):1177-1182.
[12] 郭振华. 基于轧制生产数据的变形抗力模型构建方法[D]. 秦皇岛:燕山大学, 2011. GUO Z H. Building method of the deformation resistance model based on rolling production data[D]. Qinhuangdao:Yanshan University, 2011.
[13] WU K, CHANG H, MAAWAD E, et al. Microstructure and mechanical properties of the Mg/Al laminated composite fabricated by accumulative roll bonding (ARB)[J]. Materials Science and Engineering:A, 2010, 527(13):3073-3081.
[14] LEE J M, LEE B R, KANG S B. Control of layer continuity in metallic multilayers produced by deformation synthesis method[J]. Materials Science and Engineering:A,2005,406(1):95-101.
[15] 李炎, 张振逵. 316L/16MnR 热轧复合板界面组织结构的研究[J]. 金属学报, 1995, 31(12):537-542. LI Y, ZHANG Z K. Study on the interfacial structures of hot-rolled 316L/16MnR clad plate[J]. Acta Metallurgica Sinica, 1995, 31(12):537-542.
[16] SABETGBADAM H, HANZAKI A Z, ARAEE A. Diffusion bonding of 410 stainless steel to copper using a nickel interlayer[J]. Materials Characterization, 2010, 61(6):626-634.
[17] YUAN X, TANG K, DENG Y, et al. Impulse pressuring diffusion bonding of a copper alloy to a stainless steel with/without a pure nickel interlayer[J]. Materials & Design, 2013, 52(24):359-366.
[18] 陈全忠. 1100/7075 铝合金多层复合板材的强韧化研究[D]. 重庆:重庆大学, 2012. CHEN Q Z. Study of strengthening and toughening on 1100/7075 Al alloy multilayered sheets[D]. Chongqing:Chongqing University, 2012.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[3] 张桂源, 李于朋, 宫文彪, 宫明月, 崔恒. Zn对钢/铝异种金属搅拌摩擦焊接头界面组织及性能的影响[J]. 材料工程, 2020, 48(8): 149-156.
[4] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[5] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[6] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[7] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[8] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[9] 赵强, 祝文卉, 邵天巍, 帅焱林, 刘佳涛, 王冉, 张利, 梁晓波. Ti-22Al-25Nb合金惯性摩擦焊接头显微组织与力学性能[J]. 材料工程, 2020, 48(6): 140-147.
[10] 石磊, 雷力明, 王威, 付鑫, 张广平. 热等静压/热处理工艺对激光选区熔化成形GH4169合金微观组织与拉伸性能的影响[J]. 材料工程, 2020, 48(6): 148-155.
[11] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[12] 赵辉, 赵菲, 杨长龙, 韩钰, 靳东, 李红英. 时效处理对Al-Zr-Sc(-Er)合金组织和性能的影响[J]. 材料工程, 2020, 48(5): 112-119.
[13] 王旭青, 彭子超, 罗学军, 马国君, 武丹. 时效制度对挤压+锻造工艺路线FGH95粉末高温合金组织和性能的影响[J]. 材料工程, 2020, 48(5): 120-126.
[14] 易振华, 冉丽萍, 易茂中. Ni-Cr-P焊膏钎焊C/C复合材料的组织和性能[J]. 材料工程, 2020, 48(5): 127-135.
[15] 李亚, 邓运来, 张劲, 田爱琴, 张勇. 7050铝合金第二相溶解行为[J]. 材料工程, 2020, 48(4): 116-122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn