Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (2): 39-45    DOI: 10.11868/j.issn.1001-4381.2015.000588
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
高温熔体反应法制备Al-5Ti-1B细化剂
李贺1, 柴丽华1, 马腾飞2, 陈子勇1
1 北京工业大学 材料科学与工程学院, 北京 100124;
2 哈尔滨工业大学 材料科学与工程学院, 哈尔滨 150001
Synthesis of Al-5Ti-1B Refiner by Melt Reaction Method
LI He1, CHAI Li-hua1, MA Teng-fei2, CHEN Zi-yong1
1 School of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China;
2 School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
全文: PDF(3255 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 利用高温熔体反应法成功制备Al-5Ti-1B细化剂。通过热力学计算,确定Al-5Ti-1B细化剂的起始反应温度,研究熔体温度对细化剂组织形貌及吸收率的影响。利用X射线衍射,扫描电子显微镜和X射线能谱仪观察细化剂的相组成和形貌,同时对Al-5Ti-1B细化剂铸锭进行高温挤压,并对挤压出的9.5mm丝材进行微观组织分析和细化实验。结果表明:细化剂主要由TiB2,TiAl3,α-Al相组成;850℃制备的细化剂铸锭组织形貌最佳,且Ti和B吸收率达到最佳匹配。挤压后TiAl3相呈细小的块状和TiB2弥散分布在基体内。添加0.2%(质量分数)细化剂后,纯铝的晶粒尺寸由3.99mm细化到0.45mm。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李贺
柴丽华
马腾飞
陈子勇
关键词 Al-Ti-B熔体反应法热力学计算微观组织晶粒细化    
Abstract:Al-5Ti-1B refiner was successfully prepared by melt reaction method. Through the thermodynamics calculation, the initial reaction temperature was determined. The influence of reaction temperature on microstructure and absorption rate of the alloy was investigated. The phase and microstructure of the alloy were observed by X-ray diffraction, scanning electron microscope and energy dispersive spectrometer. The Al-5Ti-1B refiner was extruded at high temperature to wire with the diameter of 9.5mm, and then the refinement experiment was carried out on pure aluminium. The results indicate that the refiner consists of TiB2, TiAl3 and α-Al, and the microstructure prepared at 850℃ is the optimum and the absorption rate of Ti and B matches the best. The TiAl3 and TiB2 phases distribute homogeneously in the matrix after extrusion. When adding 0.2%(mass fraction) of Al-5Ti-1B refiner, the grain size of pure aluminium reduces from 3.99mm to 0.45mm.
Key wordsAl-Ti-B    melt reaction method    thermodynamics calculation    microstructure    grain refinement
收稿日期: 2015-05-12      出版日期: 2017-02-23
中图分类号:  TG146.2+1  
通讯作者: 陈子勇(1966-),男,教授,博士,从事专业:先进轻合金,联系地址:北京市朝阳区平乐园100号北京工业大学材料学院309北(100124),czy@bjut.edu.cn     E-mail: czy@bjut.edu.cn
引用本文:   
李贺, 柴丽华, 马腾飞, 陈子勇. 高温熔体反应法制备Al-5Ti-1B细化剂[J]. 材料工程, 2017, 45(2): 39-45.
LI He, CHAI Li-hua, MA Teng-fei, CHEN Zi-yong. Synthesis of Al-5Ti-1B Refiner by Melt Reaction Method. Journal of Materials Engineering, 2017, 45(2): 39-45.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.000588      或      http://jme.biam.ac.cn/CN/Y2017/V45/I2/39
[1] BIROL Y.Al-Ti-B grain refiners via powder metallurgy processing of Al/K2TiF6/KBF4 powder blends[J].Journal of Alloys and Compounds,2009,480(2):311-314.
[2] 黄元春,杜志勇,肖政兵,等.Al-Ti-C和Al-Ti-B对7050铝合金微观组织与力学性能的影响[J].材料工程,2015,43(12):75-80. HUANG Y C,DU Z Y,XIAO Z B,et al.Effect of Al-Ti-C and Al-Ti-B on microstructure and mechanical performance of 7050 aluminum alloy[J].Journal of Materials Engineering,2015,43 (12):75-80.
[3] 高耸,疏达,王镭,等.Al-Ti-B 晶粒细化剂的研究进展[J].轻合金加工技术,2007,35(12):7-10. GAO S,SHU D,WANG L,et al.Research progress of Al-Ti-B grain refiner[J].Light Alloy Fabrication Technology,2007,35(12):7-10.
[4] POURKIA N,EMAMY M,FARHANGI H,et al.The effect of Ti and Zr elements and cooling rate on the microstructure and tensile properties of a new developed super high-strength aluminum alloy[J].Materials Science and Engineering:A,2010,527(20):5318-5325.
[5] MURTY B S,KORI S A,CHAKRABORTY M.Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying[J].International Materials Reviews,2002,47(3):3-29.
[6] HE Y D,ZHANG X M,CAO Z Q.Effect of minor Cr,Mn,Zr,Ti and B on grain refinement of as-cast Al-Zn-Mg-Cu alloys[J].Rare Metal Materials and Engineering,2010,39(7):1135-1140.
[7] STURZ L,DREVERMANN A,PICKMANN C,et al.Influence of grain refinement on the columnar-to-equiaxed transition in binary Al alloys[J].Materials Science and Engineering:A,2005,413-414(6):379-383.
[8] WANG E,GAO T,NIE J,et al.Grain refinement limit and mechanical properties of 6063 alloy inoculated by Al-Ti-C (B) master alloys[J].Journal of Alloys and Compounds,2014,594(12):7-11.
[9] MA T F,CHEN Z Y,NIE Z R,et al.Microstructure of Al-Ti-B-Er refiner and its grain refining performance[J].Journal of Rare Earths,2013,31(6):622-627.
[10] CAO F R,WEN J L,DING H,et al.Force analysis and experimental study of pure aluminum and Al-5%Ti-1%B alloy continuous expansion extrusion forming process[J].Transactions of Nonferrous Metals Society of China,2013,23(1):201-207.
[11] KANDALOVA E G,NIKITIN V I,JIE W Q,et al.Effect of Al powder content on SHS Al-Ti grain refiner[J].Materials Letters,2002,54(2):131-134.
[12] 叶大伦,胡建华.实用无机热力学数据手册[M].2版.北京:冶金工业出版社,2002. YE D L,HU J H.Practical Inorganic Thermodynamics Manual[M].2nd Edition.Beijing:Metallurgical Industry Press,2002.
[13] BIROL Y.Production of Al-Ti-B grain refining master alloys from Na2B4O7 and K2TiF6[J].Journal of Alloys and Compounds,2008,458(1-2):271-276.
[14] NIKITIN V I,JIE W Q,KANDALOVA E G,et al.Preparation of Al-Ti-B grain refiner by SHS technology[J].Scripta Materialia,2000,42(6):561-566.
[15] 王衍行,林均品,贺跃辉,等.元素粉末Ti与Al反应机理的研究进展[J].材料导报,2007,(1):83-85. WANG Y X,LIN J P,HE Y H,et al.Research progress of Ti and Al powder reaction mechanism[J].Materials Review,2007,(1):83-85.
[16] SUBRAHMANYAM J,VIJAVAKUMAR M.Self-propagation high-temperature synthesis[J].Journal of Materials Science,1992,27(23):6249-6273.
[17] YE Y C,HE L J,LI P J.Difference of grain refining effect of Sc and Ti additions in aluminum by empirical electron theory analysis[J].Transactions of Nonferrous Metals Society of China,2010,(3):465-470.
[18] BIROL Y.Aluminothermic reduction of boron oxide for the manufacture of Al-B alloys[J].Materials Chemistry and Physics,2012,136(2-3):963-966.
[19] LI P J,KANDALOVA E G,NIKITIN V I.Grain refining performance of Al-Ti master alloys with different microstructures[J].Materials Letters,2005,59(6):723-727.
[20] LI P J,KANDALOVA E G,NIKITIN V I,et al.Effect of fluxes on structure formation of SHS Al-Ti-B grain refiner[J].Materials Letters,2003,57(22-23):3694-3698.
[21] BIROL Y.The effect of holding conditions in the conventional halide salt process on the performance of Al-Ti-B grain refiner alloys[J].Journal of Alloys and Compounds,2007,427(1-2):142-147.
[22] BIROL Y.Production of Al-Ti-B master alloys from Ti sponge and KBF4[J].Journal of Alloys and Compounds,2007,440(1-2):108-112.
[23] AURADI V,KORI S A.Influence of reaction temperature for the manufacturing of Al-3Ti and Al-3B master alloys[J].Journal of Alloys and Compounds,2008,453(1):147-156.
[24] ZHANG M X,KELLY P M,EASTON M A,et al.Crystallographic study of grain refinement in aluminum alloys using the edge-to-edge matching model[J].Acta Materialia,2005,53(5):1427-1438.
[25] MOHANTY P S,GRUZLESKI J E.Mechanism of grain refinement in aluminum[J].Acta Materialia,1995,43(5):2001-2012.
[1] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[2] 赵强, 祝文卉, 邵天巍, 帅焱林, 刘佳涛, 王冉, 张利, 梁晓波. Ti-22Al-25Nb合金惯性摩擦焊接头显微组织与力学性能[J]. 材料工程, 2020, 48(6): 140-147.
[3] 代晓腾, 马鸣龙, 张奎, 李永军, 袁家伟, 刘小稻, 王胜青. Ce对铸态Mg-6Zn合金组织与导热性能的影响[J]. 材料工程, 2020, 48(1): 92-97.
[4] 陈航, 弭光宝, 李培杰, 王旭东, 黄旭, 曹春晓. 氧化石墨烯对600℃高温钛合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(9): 38-45.
[5] 欧阳佩旋, 弭光宝, 李培杰, 何良菊, 曹京霞, 黄旭. NiCrAl/YSZ/NiCrAl-B.e复合涂层对α+β型高温钛合金燃烧产物的影响[J]. 材料工程, 2019, 47(5): 43-52.
[6] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
[7] 唐文珅, 杨新岐, 李胜利, 李会军. 焊接参数对铁素体不锈钢搅拌摩擦焊接头组织及性能的影响[J]. 材料工程, 2019, 47(5): 115-121.
[8] 闫钊鸣, 张治民, 杜玥, 张冠世, 任璐英. 均匀化处理对Mg-13Gd-3.5Y-2Zn-0.5Zr镁合金组织和力学性能的影响[J]. 材料工程, 2019, 47(5): 93-99.
[9] 黄利, 黄光杰, 吴晓东, 曹玲飞, 李佳. 预处理工艺对双辊铸轧3003铝合金再结晶行为的影响[J]. 材料工程, 2019, 47(4): 135-142.
[10] 叶凌英, 孙泉, 李红萍, 刘胜胆, 张新明. 预变形对2050铝锂合金晶粒细化及超塑性的影响[J]. 材料工程, 2019, 47(12): 92-97.
[11] 臧金鑫, 陈军洲, 伊琳娜, 汝继刚. 时效工艺对2124铝合金厚板组织与性能的影响[J]. 材料工程, 2019, 47(12): 98-103.
[12] 王盈辉, 王快社, 王文, 彭湃, 车倩颖, 乔柯. 转速对铝铜异种材料水下搅拌摩擦焊接接头组织与性能的影响[J]. 材料工程, 2019, 47(11): 155-162.
[13] 李子夫, 邓运来, 张臻, 孙琳, 张议丹, 孙泉. 挤压比对Al-0.68Mg-0.60Si合金组织和性能的影响[J]. 材料工程, 2019, 47(10): 60-67.
[14] 陈刚, 王璐, 杨静, 李强, 吕品, 马胜国. Al0.1CoCrFeNi高熵合金的力学性能和变形机理[J]. 材料工程, 2019, 47(1): 106-111.
[15] 史倩茹, 张敏, 吴伟刚. 钛-钢爆炸复合板熔焊对接过渡层焊接材料[J]. 材料工程, 2018, 46(9): 138-143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn