Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (3): 112-118    DOI: 10.11868/j.issn.1001-4381.2015.000850
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
升温速率对7B04铝合金板材晶粒组织和超塑性的影响
陈敏1,2, 叶凌英1,2, 孙大翔1,2, 杨涛1,2, 王国玮1,2, 张新明1,2
1. 中南大学 材料科学与工程学院, 长沙 410083;
2. 中南大学 有色金属材料科学与工程教育部重点实验室, 长沙 410083
Effect of Heating Rate on Grain Structure and Superplasticity of 7B04 Aluminum Alloy Sheets
CHEN Min1,2, YE Ling-ying1,2, SUN Da-xiang1,2, YANG Tao1,2, WANG Guo-wei1,2, ZHANG Xin-ming1,2
1. School of Materials Science and Engineering, Central South University, Changsha 410083, China;
2. Key Laboratory of Nonferrous Materials Science and Engineering(Ministry of Education), Central South University, Changsha 410083, China
全文: PDF(9998 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用形变热处理法制备7B04铝合金细晶板材,利用EBSD和高温拉伸等实验方法研究退火过程中升温速率对板材晶粒组织和超塑性的影响。结果表明:升温速率为5.0×10-3K/s时,退火后板材的轧向和法向的平均晶粒尺寸分别为28.2μm和13.9μm,形核效率为1/1000。随着升温速率的提高,合金平均晶粒尺寸不断减小,形核效率不断提升。当升温速率提高至30.0K/s时,其轧向和法向的平均晶粒尺寸分别降低至9.9μm和5.1μm,形核效率提升至1/80。此外,板材的伸长率也随着升温速率的提高而增大,在773K/8×10-4s-1的变形条件下,试样的伸长率从100%提高至730%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈敏
叶凌英
孙大翔
杨涛
王国玮
张新明
关键词 铝合金形变热处理升温速率晶粒尺寸超塑性    
Abstract:Fine-grained 7B04 aluminum alloy sheets were manufactured through thermo-mechanical treatment. The effects of anneal heating rate on grain structure and superplasticity were investigated using electron back scattering diffraction(EBSD) and high temperature tensile test. The results show that at the heating rate of 5.0×10-3K/s, the average grain sizes along the rolling direction(RD) and normal direction(ND) are 28.2μm and 13.9μm respectively, the nucleation rate is 1/1000. With the increase of heating rate, the average grain size decreases, and the nucleation rate increases. When the heating rate increases to 30.0K/s, the average grain sizes along the RD and ND decrease respectively to 9.9μm and 5.1μm, and the nucleation rate increases to 1/80. Besides, with the increase of heating rate, the elongation of sheets also increases. The elongation of the specimens increases from 100% to 730% under the deforming condition of 773K/8×10-4s-1.
Key wordsaluminium alloy    thermo-mechanical treatment    heating rate    grain size    superplasticity
收稿日期: 2015-07-29      出版日期: 2017-03-22
中图分类号:  TG166.3  
通讯作者: 叶凌英(1981-),男,副教授,博士,现从事铝合金超塑性相关研究,联系地址:湖南省长沙市岳麓区中南大学本部特冶楼215(410083),E-mail:yelingying_1981@163.com     E-mail: yelingying_1981@163.com
引用本文:   
陈敏, 叶凌英, 孙大翔, 杨涛, 王国玮, 张新明. 升温速率对7B04铝合金板材晶粒组织和超塑性的影响[J]. 材料工程, 2017, 45(3): 112-118.
CHEN Min, YE Ling-ying, SUN Da-xiang, YANG Tao, WANG Guo-wei, ZHANG Xin-ming. Effect of Heating Rate on Grain Structure and Superplasticity of 7B04 Aluminum Alloy Sheets. Journal of Materials Engineering, 2017, 45(3): 112-118.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.000850      或      http://jme.biam.ac.cn/CN/Y2017/V45/I3/112
[1] 王建国, 王祝堂.航空航天变形铝合金的进展(1)[J].轻合金加工技术,2013,41(8):1-6. WANG J G, WANG Z T.The progress of the deformation of aerospace aluminum alloy(1)[J].Light Alloy Fabrication Technology,2013, 41(8):1-6.
[2] 楼瑞祥. 大飞机铝合金现状与发展趋势[C]//中国航空学会2007年学术年会. 深圳:中国航空学会、中国工程院机械与运载工程学部, 2007. LOU R X. The present situation and development trend of aluminum alloy for large aircraft[C]//Chinese Society of Aeronautics and Astronautics 2007 Annual Conference. Shenzhen:Chinese Society of Aeronautics and Astronautics Department of Mechanical and Transportation Engineering of Chinese Academy of Engineering,2007.
[3] LIU F C, XUE P, MA Z Y. Microstructural evolution in recrystallized and unrecrystallized Al-Mg-Sc alloys during superplastic deformation[J]. Materials Science and Engineering:A, 2012, 547:55-63.
[4] HUMPHREYS F J, HATHERLY M. Recystallization and related annealing phenomena[M].2 ed.Oxford:Pergamon Press, 2004.
[5] 张新明,叶凌英,杜予晅,等. 01420铝锂合金的粒子激发再结晶形核[J].中南大学学报,2007,38(1):19-23. ZHANG X M, YE L Y, DU Y X, et al. Particle stimulated nucleation of recrystallization in 01420 Al-Li alloy[J].Joural of Central South University, 2007, 38(1):19-23.
[6] HA T K, SUNG H J, KIM K S, et al. An internal variable approach to the grain size effect on the superplastic deformation behavior of a 7475 Al alloy[J]. Materials Science and Engineering:A, 1999, 271(1-2):160-166.
[7] WERT J A, PATON N E, HAMILTON C H, et al. Grain refinement in 7075 Aluminum by thermo-mechanical processing[J]. Metall Trans:A, 1981, 12(7):1267-1276.
[8] BAMRTON C C, WERT J A, MAHONEY M W. Heating rate effects on recrystallized grain size in two Al-Zn-Mg-Cu alloys[J]. Metallurgical Transcations:A, 1982, 13, 193-197.
[9] WANG K, LIU F C, MA Z Y, et al. Realization of exceptionally high elongation at high strain rate in a friction stir processed Al-Zn-Mg-Cu alloy with the presence of liquid phase[J]. Scripta Materialia, 2011, 64:572-575.
[10] ZHOU M, DENG J, JIANG Y Q, et al. Hot tensile deformation behaviors and constitutive model of an Al-Zn-Mg-Cu alloy[J]. Materials & Design, 2014, 59:141-150.
[11] TAHERY-MANDARJANI M, ZAREI-HANZAKI A, ABEDI H R. Hot ductility behavior of an extruded 7075 aluminum alloy[J]. Materials Science and Engineering:A, 2015, 637:107-122.
[12] LANG Y J, CUI H, CAI Y H, et al. Effect of strain-modified particles on the formation of fined grains and the properties of AA7050 alloy[J]. Materials & Design, 2012, 39:220-225.
[13] 张新明,邓运来,张勇,等.高强铝合金的发展及其材料的制备加工技术[J].金属学报,2015,51(3):257-271. ZHANG X M, DEGN Y L, ZHANG Y, et al. Development of high strength aluminum and processing techniques for the materials[J].Acta Metallurgica Sinica, 2015, 51(3):257-271.
[14] 王建国, 王祝堂.航空航天变形铝合金的进展(3)[J].轻合金加工技术,2013,41(10):1-14. WANG J G, WANG Z T. The progress of the deformation of aerospace aluminum Alloy[J].Light Alloy Fabrication Technology, 2013, 41(10):1-14.
[15] 蹇海根. 时效制度对7B04铝合金组织与性能的影响[D]. 长沙:中南大学,2004. JIAN H G. The effect of aging on microstruture and properties of 7B04 aluminum alloy[D]. Changsha:Central South University,2004.
[16] 蹇海根. 固溶处理对7B04铝合金组织和性能的影响[J]. 材料热处理学报, 2007, 28(3):72-76. JIAN H G. Solution treatment on the microstructure and mechanical properties of 7B04 aluminum alloy[J]. Transactions of Metal Heat Treatment, 2007, 28(3):72-76.
[17] 宁爱林,曾苏民. 时效制度对7B04铝合金组织和性能的影响[J].中国有色金属学报,2004,14(6):922-927. NING A L, ZENG S M. The effects of aging system on microstructure and property of 7B04 alloy[J].The Chinese Journal of Nonferrous Metals, 2004, 14(6):922-927.
[18] 李志辉,熊柏青. 时效制度对7B04高强铝合金力学及腐蚀性能的影响[J].稀有金属,2008,32(6):794-798. LI Z H, XIONG B Q. The effects of aging system on microstructure and property of 7B04 high strength aluminum alloy[J]. Rare Metal Material and Engineering, 2008,32(6):794-798.
[19] DOHERTY R D, HUGHES D A, HUMPHREYS F J, et al. Current issues in recrystallization:a review[J]. Materials Science and Engineering:A, 1997, 238(2):219-274.
[20] 叶凌英. 细晶铝锂合金板材的制备原理技术及超塑性变形行为[D].长沙:中南大学,2010. YE L Y. Preparation technology and superplastic deformation behavior of fine-grained Al-Li alloy sheet[D].Changsha:Central South University,2010.
[21] 丁桦,张凯峰. 材料超塑性研究的现状与发展[J].中国有色金属学报,2004,14(7):1059-1067. DING H, ZHANG K F. The present Situation of the superplastic materials research and development[J]. The Chinese Journal of Nonferrous Metals, 2004, 14(7):1059-1067.
[1] 冯昊, 符殿宝, 程佳乐, 唐寅林, 陈俊锋, 王晨, 邹林池. 压缩预变形对7050铝合金非等温时效析出行为的影响[J]. 材料工程, 2020, 48(9): 107-114.
[2] 栾建泽, 那景新, 谭伟, 慕文龙, 申浩, 秦国锋. 铝合金-BFRP粘接接头的服役高温老化力学性能及失效预测[J]. 材料工程, 2020, 48(9): 166-172.
[3] 段晓鸽, 江海涛, 米振莉, 王丽丽, 李萧. 轧制方式对6016铝合金薄板组织和塑性各向异性的影响[J]. 材料工程, 2020, 48(8): 134-141.
[4] 张桂源, 李于朋, 宫文彪, 宫明月, 崔恒. Zn对钢/铝异种金属搅拌摩擦焊接头界面组织及性能的影响[J]. 材料工程, 2020, 48(8): 149-156.
[5] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[6] 李亚, 邓运来, 张劲, 田爱琴, 张勇. 7050铝合金第二相溶解行为[J]. 材料工程, 2020, 48(4): 116-122.
[7] 安立辉, 苑世剑. 2219铝合金薄壁曲面件拉形过程变形均匀性[J]. 材料工程, 2020, 48(4): 123-130.
[8] 邓运来, 邓舒浩, 叶凌英, 林森, 孙琳, 吉华. 焊后热处理对AA7204-T4铝合金搅拌摩擦焊接头组织与力学性能的影响[J]. 材料工程, 2020, 48(4): 131-138.
[9] 李国伟, 梁亚红, 陈芙蓉, 韩永全. 7075铝合金脉冲变极性等离子弧焊接头的双级时效行为[J]. 材料工程, 2020, 48(2): 140-147.
[10] 韩永明, 韩俊玲, 辛龙, 刘廷光, 陆永浩, 庄子哲雄. 晶界工程处理对Inconel 690TT合金微动磨损行为的影响[J]. 材料工程, 2020, 48(10): 123-132.
[11] 冀光普, 何秀芳, 廖海峰, 戴乐阳, 孙迪, 蔡谷昌. 等离子体辅助球磨制备表面修饰片状纳米Cu粉及摩擦学性能[J]. 材料工程, 2019, 47(6): 114-120.
[12] 范淑敏, 陈送义, 张星临, 周亮, 黄兰萍, 陈康华. 多级时效热处理对7056铝合金析出组织与耐蚀性的影响[J]. 材料工程, 2019, 47(6): 136-143.
[13] 王玉洁, 张鹏, 王选, 杜云慧, 王胜林, 张伟一, 鹿红梅. 氧气流量对LY12铝合金微弧氧化膜致密性的影响[J]. 材料工程, 2019, 47(5): 86-92.
[14] 李惠, 肖文龙, 张艺镡, 马朝利. 多重结构Ti-B4C/Al2024复合材料的组织和力学性能[J]. 材料工程, 2019, 47(4): 152-159.
[15] 李卫, 陈康华, 焦慧彬, 周亮, 杨振, 陈送义. 微量Ge对7056铝合金组织和淬火敏感性的影响[J]. 材料工程, 2019, 47(3): 123-130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn