Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (3): 54-59    DOI: 10.11868/j.issn.1001-4381.2015.000177
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Ti/Nb作中间层脉冲加压扩散连接TiC金属陶瓷与不锈钢
李佳, 盛光敏, 黄利
重庆大学 材料科学与工程学院, 重庆 400044
Impulse Pressuring Diffusion Bonding of TiC Cermet to Stainless Steel Using Ti/Nb Interlayer
LI Jia, SHENG Guang-min, HUANG Li
College of Material Sciences and Engineering, Chongqing University, Chongqing 400044, China
全文: PDF(14364 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 用Ti/Nb作中间层,在温度890℃、时间4~12min、脉冲压力2~10MPa、频率f=0.5Hz、恒压10MPa下,对TiC金属陶瓷和304不锈钢(304SS)进行脉冲加压与恒压扩散焊,获得了牢固的固相扩散焊接头。通过扫描电镜SEM、能谱EDS、X射线衍射XRD与剪切性能测试,对接头的显微组织、界面产物与强度进行分析。结果显示:两种接头的界面物相相似,主要有σ相,(β-Ti,Nb)与α+β-Ti固溶体。连接时间10min时,恒压下的TiC/304SS接头抗剪强度为55.6MPa,而脉冲加压下的接头抗剪强度达110MPa。恒压下接头断裂方式为TiC陶瓷断裂,而脉冲压力下接头断裂方式为TiC陶瓷与界面产物间交替进行的混合断裂。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李佳
盛光敏
黄利
关键词 TiC金属陶瓷扩散焊脉冲压力Ti/Nb微观组织    
Abstract:Impulse pressuring diffusion bonding(IPDB) and constant pressuring diffusion bonding(CPDB) of TiC cermet to 304 stainless steel(304SS) using Ti/Nb interlayer was carried out at 890℃ under a impulse pressuring of 2-10MPa and a constant pressuring of 10MPa within a duration of only 4-12min, and a robust metallurgical bonding was achieved. Microstructure characterization and shear performance of the IPDB and CPDB joints were analyzed by SEM, EDS, XRD and shearing test. The results show that the interface phases in those two kinds of joints are similar, which are mainly σ phase,(β-Ti, Nb) and α+β-Ti solid solution. When the joint is bonded for 10min, shear strength of TiC/304SS CPDB joints is 55.6MPa, while the shear strength of IPDB joints reaches 110MPa. The fracture of CPDB joints is TiC cermet fracture, while that of IPDB joints is mixed fracture by alternated between TiC cermet and reaction layer.
Key wordsTiC cermet    diffusion bonding    impulse pressuring    Ti/Nb    microstructure
收稿日期: 2015-02-02      出版日期: 2017-03-22
中图分类号:  TG457  
通讯作者: 盛光敏(1958-),男,教授,博士,主要从事异种材料的连接、高抗震性能建筑结构钢的研究,联系地址:重庆市沙坪坝区沙正街174号重庆大学材料科学与工程学院(400044),E-mail:gmsheng@cqu.edu.cn     E-mail: gmsheng@cqu.edu.cn
引用本文:   
李佳, 盛光敏, 黄利. Ti/Nb作中间层脉冲加压扩散连接TiC金属陶瓷与不锈钢[J]. 材料工程, 2017, 45(3): 54-59.
LI Jia, SHENG Guang-min, HUANG Li. Impulse Pressuring Diffusion Bonding of TiC Cermet to Stainless Steel Using Ti/Nb Interlayer. Journal of Materials Engineering, 2017, 45(3): 54-59.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.000177      或      http://jme.biam.ac.cn/CN/Y2017/V45/I3/54
[1] 苗赫濯,林旭平,齐龙浩.先进结构陶瓷材料研究进展[J].稀有金属材料与工程,2008,37(1):14-19. MIAO H Z, LIN X P, QI L H. The progress of research on advanced structure ceramics[J]. Rare Metal Materials and Engineering,2008,37(1):14-19.
[2] 孙康宁,尹衍升,李爱民.金属间化合物/陶瓷基复合材料[M].北京:机械工业出版社,2002. SUN K N, YIN Y S, LI A M. Intermetallic/Ceramic Matrix Composites[M].Beijing:China Machine Press,2002.
[3] HE P, YUE X, ZHANG J H. Hot pressing diffusion bonding of a titanium alloy to a stainless steel with an aluminum alloy interlayer[J]. Materials Science and Engineering:A,2008,486:171-176.
[4] DILERMANDO T, MAURIZIO F, GERT D O. Diffusion bonding of aluminum oxide to stainless steel using stress relief interlayers[J]. Materials Science and Engineering,2002,337(1-2):287-296.
[5] HUANG W Q, LI Y J, WANG J. Microstructure and fracture of TiC-Al2O3/W18Cr4V diffusion bonded joint[J]. Kovove Materialy-Metallic Materials, 2010, 48(4):227-231.
[6] 邹贵生,吴爱萍,任家烈.Ti/Ni/Ti复合层TLP扩散连接Si3N4陶瓷结合机理[J].清华大学学报:自然科学版,2001,41(4-5):51-54. ZOU G S, WU A P, REN J L. TLP diffusion bonding mechanism of Si3N4 ceramics with multiple Ti/Ni/Ti interlayers[J]. Journal of Tsinghua University:Science and Technology,2001,41(4-5):51-54.
[7] ZHENG C, LOU H, FEI Z, et al. Partial transient liquid-phase bonding of Si3N4 with Ti/Cu/Ni multi-interlayers[J]. Journal of Materials Science Letters,1997,16(24):2026-2028.
[8] MARKS R A, SUGAR J D, GLAESER A M. Ceramic joining IV:effects of processing conditions on the properties of alumina joined via Cu/Nb/Cu interlayers[J]. Journal of Materials Science,2001,36(23):5609-5624.
[9] YANG M, ZOU Z D, SONG S L, et al. Effect of interlayer thickness on strength and fracture of Si3N4 and Inconel600 joint[J]. Key Engineering Materials,2005,297-300:2435-2440.
[10] 李佳,盛光敏. Ti/Nb/Cu作缓冲层的TiC金属陶瓷/304不锈钢扩散连接[J].材料工程,2014,(12):60-65. LI J, SHENG G M. Diffusion bonding of TiC cermet/304SS with Ti/Nb/Cu relief interlayer[J]. Journal of Materials Engineering,2014,(12):60-65.
[11] 秦斌,盛光敏,周波.钛合金和不锈钢的扩散焊接[J].中国有色金属学报,2004,14(9):1545-1550. QIN B, SHENG G M, ZHOU B. Diffusion welding of titanium alloy and stainless steel[J]. The Chinese Journal of Nonferrous Metals,2004,14(9):1545-1550.
[12] 李万青, 巍红梅, 何鹏, 等. Ti3Al和Ti2AlNb合金扩散连接界面的组织及力学性能[J].材料工程,2015,43(1):37-43. LI W Q, WEI H M, HE P, et al. Interfacial microstructure and mechanical properties of diffusion bonding of Ti3Al and Ti2AlNb alloys[J]. Journal of Materials Engineering,2015,43(1):37-43.
[13] POURANVARI M, EKRAMI A, KOKABI A H. Transient liquid phase bonding of wrought IN718 nickel based superalloy using standard heat treatment cycles:Microstructure and mechanical properties[J]. Materials and Design, 2013, 50:694-701.
[14] WU N, LI Y J, MA Q S. Microstructure evolution and shear strength of vacuum brazed joint for super-Ni/NiCr laminated composite with Ni-Cr-Si-B amorphous interlayer[J]. Materials and Design,2014,53:816-821.
[15] MASSALSKI T B, OKAMOTO H, SUBRAMANIAN P R, et al. Binary Alloy Phase Diagrams[M]. William Park Woodside:ASM International Press,1990.
[16] PIERSON H O. Handbook of Refractory Carbides & Nitrides:Properties, Characteristics, Processing and Apps[M]. William Andrew:Elsevierence Press,1996.
[17] ZDANIEWSKI W A, COMWAY J C, KIRCHNER H P. Effect of joint thickness and residual stresses on the properties of ceramic adhesive joints:Ⅱ, experimental results[J]. Journal of the American Ceramic Society,1987,70(2):110-118.
[18] HE P, LIU D. Mechanism of forming interfacial intermetallic compounds at interface for solid state diffusion bonding of dissimilar materials[J]. Materials Science and Engineering:A,2006,437(2):430-435.
[19] 何鹏,冯吉才,钱乙余.扩散连接接头区域元素浓度分布的数值分析[J].焊接学报,2002,23(3):80-82. HE P, FENG J C, QIANG Y Y. Numeric analysis for density distribution of element at the interface in diffusion bonding[J]. Transactions of the China Welding Institution,2002,23(3):80-82.
[20] 董凤,陈少平,胡利方, 等.电场作用下AZ31B/Cu扩散焊界面的结构及性能[J].材料工程,2015,43(2):35-40. DONG F, CHENG S P, HU L F, et al. Structure and properties of AZ31B/Cu diffusion interlayer under electric field[J]. Journal of Materials Engineering,2015,43(2):35-40.
[1] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[2] 赵强, 祝文卉, 邵天巍, 帅焱林, 刘佳涛, 王冉, 张利, 梁晓波. Ti-22Al-25Nb合金惯性摩擦焊接头显微组织与力学性能[J]. 材料工程, 2020, 48(6): 140-147.
[3] 代晓腾, 马鸣龙, 张奎, 李永军, 袁家伟, 刘小稻, 王胜青. Ce对铸态Mg-6Zn合金组织与导热性能的影响[J]. 材料工程, 2020, 48(1): 92-97.
[4] 陈航, 弭光宝, 李培杰, 王旭东, 黄旭, 曹春晓. 氧化石墨烯对600℃高温钛合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(9): 38-45.
[5] 欧阳佩旋, 弭光宝, 李培杰, 何良菊, 曹京霞, 黄旭. NiCrAl/YSZ/NiCrAl-B.e复合涂层对α+β型高温钛合金燃烧产物的影响[J]. 材料工程, 2019, 47(5): 43-52.
[6] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
[7] 唐文珅, 杨新岐, 李胜利, 李会军. 焊接参数对铁素体不锈钢搅拌摩擦焊接头组织及性能的影响[J]. 材料工程, 2019, 47(5): 115-121.
[8] 闫钊鸣, 张治民, 杜玥, 张冠世, 任璐英. 均匀化处理对Mg-13Gd-3.5Y-2Zn-0.5Zr镁合金组织和力学性能的影响[J]. 材料工程, 2019, 47(5): 93-99.
[9] 黄利, 黄光杰, 吴晓东, 曹玲飞, 李佳. 预处理工艺对双辊铸轧3003铝合金再结晶行为的影响[J]. 材料工程, 2019, 47(4): 135-142.
[10] 臧金鑫, 陈军洲, 伊琳娜, 汝继刚. 时效工艺对2124铝合金厚板组织与性能的影响[J]. 材料工程, 2019, 47(12): 98-103.
[11] 王盈辉, 王快社, 王文, 彭湃, 车倩颖, 乔柯. 转速对铝铜异种材料水下搅拌摩擦焊接接头组织与性能的影响[J]. 材料工程, 2019, 47(11): 155-162.
[12] 李子夫, 邓运来, 张臻, 孙琳, 张议丹, 孙泉. 挤压比对Al-0.68Mg-0.60Si合金组织和性能的影响[J]. 材料工程, 2019, 47(10): 60-67.
[13] 陈刚, 王璐, 杨静, 李强, 吕品, 马胜国. Al0.1CoCrFeNi高熵合金的力学性能和变形机理[J]. 材料工程, 2019, 47(1): 106-111.
[14] 史倩茹, 张敏, 吴伟刚. 钛-钢爆炸复合板熔焊对接过渡层焊接材料[J]. 材料工程, 2018, 46(9): 138-143.
[15] 郑欢欢, 刘鑫禹, 陈亚楠, 张从林, 吕鹏, 蔡杰, 关庆丰. 20钢强流脉冲电子束表面合金化的微观组织和性能[J]. 材料工程, 2018, 46(7): 127-135.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn