Impulse pressuring diffusion bonding (IPDB) and constant pressuring diffusion bonding (CPDB) of TiC cermet to 304 stainless steel (304SS) using Ti/Nb interlayer was carried out at 890℃ under a impulse pressuring of 2-10MPa and a constant pressuring of 10MPa within a duration of only 4-12min, and a robust metallurgical bonding was achieved. Microstructure characterization and shear performance of the IPDB and CPDB joints were analyzed by SEM, EDS, XRD and shearing test. The results show that the interface phases in those two kinds of joints are similar, which are mainly σ phase, (β-Ti, Nb) and α+β-Ti solid solution. When the joint is bonded for 10min, shear strength of TiC/304SS CPDB joints is 55.6MPa, while the shear strength of IPDB joints reaches 110MPa. The fracture of CPDB joints is TiC cermet fracture, while that of IPDB joints is mixed fracture by alternated between TiC cermet and reaction layer.
SUN K N , YIN Y S , LI A M . Intermetallic/Ceramic Matrix Composites[M]. Beijing: China Machine Press, 2002.
3
HE P , YUE X , ZHANG J H . Hot pressing diffusion bonding of a titanium alloy to a stainless steel with an aluminum alloy interlayer[J]. Materials Science and Engineering:A, 2008, 486, 171- 176.
doi: 10.1016/j.msea.2007.08.076
4
DILERMANDO T , MAURIZIO F , GERT D O . Diffusion bonding of aluminum oxide to stainless steel using stress relief interlayers[J]. Materials Science and Engineering, 2002, 337 (1-2): 287- 296.
doi: 10.1016/S0921-5093(02)00046-1
5
HUANG W Q , LI Y J , WANG J . Microstructure and fracture of TiC-Al2O3/W18Cr4V diffusion bonded joint[J]. Kovove Materialy-Metallic Materials, 2010, 48 (4): 227- 231.
doi: 10.4149/km_2010_4_227
ZOU G S , WU A P , REN J L . TLP diffusion bonding mechanism of Si3N4 ceramics with multiple Ti/Ni/Ti interlayers[J]. Journal of Tsinghua University:Science and Technology, 2001, 41 (4-5): 51- 54.
7
ZHENG C , LOU H , FEI Z , et al. Partial transient liquid-phase bonding of Si3N4 with Ti/Cu/Ni multi-interlayers[J]. Journal of Materials Science Letters, 1997, 16 (24): 2026- 2028.
doi: 10.1023/A:1018548414552
8
MARKS R A , SUGAR J D , GLAESER A M . Ceramic joining Ⅳ:effects of processing conditions on the properties of alumina joined via Cu/Nb/Cu interlayers[J]. Journal of Materials Science, 2001, 36 (23): 5609- 5624.
doi: 10.1023/A:1012565600601
9
YANG M , ZOU Z D , SONG S L , et al. Effect of interlayer thickness on strength and fracture of Si3N4 and Inconel600 joint[J]. Key Engineering Materials, 2005, 297-300, 2435- 2440.
doi: 10.4028/www.scientific.net/KEM.297-300
QIN B , SHENG G M , ZHOU B . Diffusion welding of titanium alloy and stainless steel[J]. The Chinese Journal of Nonferrous Metals, 2004, 14 (9): 1545- 1550.
LI W Q , WEI H M , HE P , et al. Interfacial microstructure and mechanical properties of diffusion bonding of Ti3Al and Ti2AlNb alloys[J]. Journal of Materials Engineering, 2015, 43 (1): 37- 43.
13
POURANVARI M , EKRAMI A , KOKABI A H . Transient liquid phase bonding of wrought IN718 nickel based superalloy using standard heat treatment cycles:Microstructure and mechanical properties[J]. Materials and Design, 2013, 50, 694- 701.
doi: 10.1016/j.matdes.2013.03.030
14
WU N , LI Y J , MA Q S . Microstructure evolution and shear strength of vacuum brazed joint for super-Ni/NiCr laminated composite with Ni-Cr-Si-B amorphous interlayer[J]. Materials and Design, 2014, 53, 816- 821.
doi: 10.1016/j.matdes.2013.07.063
15
MASSALSKI T B , OKAMOTO H , SUBRAMANIAN P R , et al. Binary Alloy Phase Diagrams[M]. William Park Woodside: ASM International Press, 1990.
16
PIERSON H O . Handbook of Refractory Carbides & Nitrides:Properties, Characteristics, Processing and Apps[M]. William Andrew: Elsevierence Press, 1996.
17
ZDANIEWSKI W A , COMWAY J C , KIRCHNER H P . Effect of joint thickness and residual stresses on the properties of ceramic adhesive joints:Ⅱ, experimental results[J]. Journal of the American Ceramic Society, 1987, 70 (2): 110- 118.
doi: 10.1111/jace.1987.70.issue-2
18
HE P , LIU D . Mechanism of forming interfacial intermetallic compounds at interface for solid state diffusion bonding of dissimilar materials[J]. Materials Science and Engineering:A, 2006, 437 (2): 430- 435.
doi: 10.1016/j.msea.2006.08.019
HE P , FENG J C , QIANG Y Y . Numeric analysis for density distribution of element at the interface in diffusion bonding[J]. Transactions of the China Welding Institution, 2002, 23 (3): 80- 82.
DONG F , CHENG S P , HU L F , et al. Structure and properties of AZ31B/Cu diffusion interlayer under electric field[J]. Journal of Materials Engineering, 2015, 43 (2): 35- 40.