Please wait a minute...
 
2222材料工程  2017, Vol. 45 Issue (3): 54-59    DOI: 10.11868/j.issn.1001-4381.2015.000177
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Ti/Nb作中间层脉冲加压扩散连接TiC金属陶瓷与不锈钢
李佳, 盛光敏(), 黄利
重庆大学 材料科学与工程学院, 重庆 400044
Impulse Pressuring Diffusion Bonding of TiC Cermet to Stainless Steel Using Ti/Nb Interlayer
Jia LI, Guang-min SHENG(), Li HUANG
College of Material Sciences and Engineering, Chongqing University, Chongqing 400044, China
全文: PDF(14364 KB)   HTML ( 10 )  
输出: BibTeX | EndNote (RIS)      
摘要 

用Ti/Nb作中间层,在温度890℃、时间4~12min、脉冲压力2~10MPa、频率f=0.5Hz、恒压10MPa下,对TiC金属陶瓷和304不锈钢(304SS)进行脉冲加压与恒压扩散焊,获得了牢固的固相扩散焊接头。通过扫描电镜SEM、能谱EDS、X射线衍射XRD与剪切性能测试,对接头的显微组织、界面产物与强度进行分析。结果显示:两种接头的界面物相相似,主要有σ相,(β-Ti,Nb)与α+β-Ti固溶体。连接时间10min时,恒压下的TiC/304SS接头抗剪强度为55.6MPa,而脉冲加压下的接头抗剪强度达110MPa。恒压下接头断裂方式为TiC陶瓷断裂,而脉冲压力下接头断裂方式为TiC陶瓷与界面产物间交替进行的混合断裂。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李佳
盛光敏
黄利
关键词 TiC金属陶瓷扩散焊脉冲压力Ti/Nb微观组织    
Abstract

Impulse pressuring diffusion bonding (IPDB) and constant pressuring diffusion bonding (CPDB) of TiC cermet to 304 stainless steel (304SS) using Ti/Nb interlayer was carried out at 890℃ under a impulse pressuring of 2-10MPa and a constant pressuring of 10MPa within a duration of only 4-12min, and a robust metallurgical bonding was achieved. Microstructure characterization and shear performance of the IPDB and CPDB joints were analyzed by SEM, EDS, XRD and shearing test. The results show that the interface phases in those two kinds of joints are similar, which are mainly σ phase, (β-Ti, Nb) and α+β-Ti solid solution. When the joint is bonded for 10min, shear strength of TiC/304SS CPDB joints is 55.6MPa, while the shear strength of IPDB joints reaches 110MPa. The fracture of CPDB joints is TiC cermet fracture, while that of IPDB joints is mixed fracture by alternated between TiC cermet and reaction layer.

Key wordsTiC cermet    diffusion bonding    impulse pressuring    Ti/Nb    microstructure
收稿日期: 2015-02-02      出版日期: 2017-03-22
中图分类号:  TG457  
基金资助:国家自然科学基金资助项目(51205428)
通讯作者: 盛光敏     E-mail: gmsheng@cqu.edu.cn
作者简介: 盛光敏 (1958-), 男, 教授, 博士, 主要从事异种材料的连接、高抗震性能建筑结构钢的研究, 联系地址:重庆市沙坪坝区沙正街174号重庆大学材料科学与工程学院 (400044), E-mail:gmsheng@cqu.edu.cn
引用本文:   
李佳, 盛光敏, 黄利. Ti/Nb作中间层脉冲加压扩散连接TiC金属陶瓷与不锈钢[J]. 材料工程, 2017, 45(3): 54-59.
Jia LI, Guang-min SHENG, Li HUANG. Impulse Pressuring Diffusion Bonding of TiC Cermet to Stainless Steel Using Ti/Nb Interlayer. Journal of Materials Engineering, 2017, 45(3): 54-59.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.000177      或      http://jme.biam.ac.cn/CN/Y2017/V45/I3/54
Material Cr C Ni Mn Mo S W P Fe Ti
TiC 19.6 9.54 1.40 2.94 Bal
304SS 18.67 0.12 8.43 1.35 0.03 0.035 Bal
Table 1  基体的化学成分 (质量分数/%)
Material Melting point/K Coefficient of thermal expansion/(10-6 K-1) Modulus of elasticity/GPa
Ti 1913-1943 9.4 115
Nb 2468 7.2 105
TiC 3067 7.4 410-510
304SS 1399-1455 12-13 193
Table 2  Ti,Nb及基体的室温热物理性能
Fig.1  扩散焊工艺示意图 (a) 脉冲加压扩散焊;(b) 恒压扩散焊
Fig.2  扩散焊接头示意图 (a) 试样装配方式; (b) 接头剪切测试方式
Fig.3  扩散焊接头的抗剪强度随焊接时间的变化
Fig.4  扩散焊接接头的SEM形貌 (1) 和元素浓度分布曲线 (2) (a) 脉冲加压扩散焊;(b) 恒压扩散焊
Reaction layer Fe Cr Nb Ti Ni Possible phase
A 66.3 24.8 5.2 3.7 σ
B 0.92 1.58 97.5 Nb
C 49.3 50.7 (β-Ti, Nb)
D 1.7 98.3 Ti
E 93.7 6.3 α+β-Ti
Table 3  脉冲加压扩散焊接头EDS分析 (原子分数/%)
Reaction layer Thickness with IPDB/μm Thickness with CPDB/μm
A 4.60 3.76
B 19.82 20.17
C 6.32 4.27
D 15.40 17.26
E 4.78 3.65
Table 4  扩散焊接头中各反应层的厚度
Fig.5  载荷与断裂位移的关系
Fig.6  扩散焊接头断口SEM形貌 (a), (b) 脉冲加压扩散焊;(c), (d) 恒压扩散焊
Fig.7  接头断面XRD分析 (a) 脉冲加压扩散焊;(b) 恒压扩散焊
1 苗赫濯, 林旭平, 齐龙浩. 先进结构陶瓷材料研究进展[J]. 稀有金属材料与工程, 2008, 37 (1): 14- 19.
1 MIAO H Z , LIN X P , QI L H . The progress of research on advanced structure ceramics[J]. Rare Metal Materials and Engineering, 2008, 37 (1): 14- 19.
2 孙康宁, 尹衍升, 李爱民. 金属间化合物/陶瓷基复合材料[M]. 北京: 机械工业出版社, 2002.
2 SUN K N , YIN Y S , LI A M . Intermetallic/Ceramic Matrix Composites[M]. Beijing: China Machine Press, 2002.
3 HE P , YUE X , ZHANG J H . Hot pressing diffusion bonding of a titanium alloy to a stainless steel with an aluminum alloy interlayer[J]. Materials Science and Engineering:A, 2008, 486, 171- 176.
doi: 10.1016/j.msea.2007.08.076
4 DILERMANDO T , MAURIZIO F , GERT D O . Diffusion bonding of aluminum oxide to stainless steel using stress relief interlayers[J]. Materials Science and Engineering, 2002, 337 (1-2): 287- 296.
doi: 10.1016/S0921-5093(02)00046-1
5 HUANG W Q , LI Y J , WANG J . Microstructure and fracture of TiC-Al2O3/W18Cr4V diffusion bonded joint[J]. Kovove Materialy-Metallic Materials, 2010, 48 (4): 227- 231.
doi: 10.4149/km_2010_4_227
6 邹贵生, 吴爱萍, 任家烈. Ti/Ni/Ti复合层TLP扩散连接Si3N4陶瓷结合机理[J]. 清华大学学报:自然科学版, 2001, 41 (4-5): 51- 54.
6 ZOU G S , WU A P , REN J L . TLP diffusion bonding mechanism of Si3N4 ceramics with multiple Ti/Ni/Ti interlayers[J]. Journal of Tsinghua University:Science and Technology, 2001, 41 (4-5): 51- 54.
7 ZHENG C , LOU H , FEI Z , et al. Partial transient liquid-phase bonding of Si3N4 with Ti/Cu/Ni multi-interlayers[J]. Journal of Materials Science Letters, 1997, 16 (24): 2026- 2028.
doi: 10.1023/A:1018548414552
8 MARKS R A , SUGAR J D , GLAESER A M . Ceramic joining Ⅳ:effects of processing conditions on the properties of alumina joined via Cu/Nb/Cu interlayers[J]. Journal of Materials Science, 2001, 36 (23): 5609- 5624.
doi: 10.1023/A:1012565600601
9 YANG M , ZOU Z D , SONG S L , et al. Effect of interlayer thickness on strength and fracture of Si3N4 and Inconel600 joint[J]. Key Engineering Materials, 2005, 297-300, 2435- 2440.
doi: 10.4028/www.scientific.net/KEM.297-300
10 李佳, 盛光敏. Ti/Nb/Cu作缓冲层的TiC金属陶瓷/304不锈钢扩散连接[J]. 材料工程, 2014, (12): 60- 65.
10 LI J , SHENG G M . Diffusion bonding of TiC cermet/304SS with Ti/Nb/Cu relief interlayer[J]. Journal of Materials Engineering, 2014, (12): 60- 65.
11 秦斌, 盛光敏, 周波. 钛合金和不锈钢的扩散焊接[J]. 中国有色金属学报, 2004, 14 (9): 1545- 1550.
11 QIN B , SHENG G M , ZHOU B . Diffusion welding of titanium alloy and stainless steel[J]. The Chinese Journal of Nonferrous Metals, 2004, 14 (9): 1545- 1550.
12 李万青, 巍红梅, 何鹏, 等. Ti3Al和Ti2AlNb合金扩散连接界面的组织及力学性能[J]. 材料工程, 2015, 43 (1): 37- 43.
12 LI W Q , WEI H M , HE P , et al. Interfacial microstructure and mechanical properties of diffusion bonding of Ti3Al and Ti2AlNb alloys[J]. Journal of Materials Engineering, 2015, 43 (1): 37- 43.
13 POURANVARI M , EKRAMI A , KOKABI A H . Transient liquid phase bonding of wrought IN718 nickel based superalloy using standard heat treatment cycles:Microstructure and mechanical properties[J]. Materials and Design, 2013, 50, 694- 701.
doi: 10.1016/j.matdes.2013.03.030
14 WU N , LI Y J , MA Q S . Microstructure evolution and shear strength of vacuum brazed joint for super-Ni/NiCr laminated composite with Ni-Cr-Si-B amorphous interlayer[J]. Materials and Design, 2014, 53, 816- 821.
doi: 10.1016/j.matdes.2013.07.063
15 MASSALSKI T B , OKAMOTO H , SUBRAMANIAN P R , et al. Binary Alloy Phase Diagrams[M]. William Park Woodside: ASM International Press, 1990.
16 PIERSON H O . Handbook of Refractory Carbides & Nitrides:Properties, Characteristics, Processing and Apps[M]. William Andrew: Elsevierence Press, 1996.
17 ZDANIEWSKI W A , COMWAY J C , KIRCHNER H P . Effect of joint thickness and residual stresses on the properties of ceramic adhesive joints:Ⅱ, experimental results[J]. Journal of the American Ceramic Society, 1987, 70 (2): 110- 118.
doi: 10.1111/jace.1987.70.issue-2
18 HE P , LIU D . Mechanism of forming interfacial intermetallic compounds at interface for solid state diffusion bonding of dissimilar materials[J]. Materials Science and Engineering:A, 2006, 437 (2): 430- 435.
doi: 10.1016/j.msea.2006.08.019
19 何鹏, 冯吉才, 钱乙余. 扩散连接接头区域元素浓度分布的数值分析[J]. 焊接学报, 2002, 23 (3): 80- 82.
19 HE P , FENG J C , QIANG Y Y . Numeric analysis for density distribution of element at the interface in diffusion bonding[J]. Transactions of the China Welding Institution, 2002, 23 (3): 80- 82.
20 董凤, 陈少平, 胡利方, 等. 电场作用下AZ31B/Cu扩散焊界面的结构及性能[J]. 材料工程, 2015, 43 (2): 35- 40.
20 DONG F , CHENG S P , HU L F , et al. Structure and properties of AZ31B/Cu diffusion interlayer under electric field[J]. Journal of Materials Engineering, 2015, 43 (2): 35- 40.
[1] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[2] 朱阳阳, 李晓延, 张伟栋, 张虎, 何溪. 全Cu3Sn焊点在高温时效下的组织及力学性能[J]. 材料工程, 2022, 50(9): 169-176.
[3] 张昌青, 王树文, 罗德春, 师文辰, 刘晓, 崔国胜, 陈波阳, 辛舟, 芮执元. 热电耦合对铝/钢连续驱动摩擦焊接头组织的影响机理[J]. 材料工程, 2022, 50(5): 35-42.
[4] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[5] 安强, 祁文军, 左小刚. TA15钛合金表面原位合成TiC增强钛基激光熔覆层的组织与耐磨性[J]. 材料工程, 2022, 50(4): 139-146.
[6] 孙琦迪, 杨蔚涛, 郝庆国, 关肖虎, 章斌, 杨旗. 低周疲劳变形过程中Fe-33Mn-4Si合金钢的微观组织演变[J]. 材料工程, 2022, 50(4): 162-171.
[7] 计植耀, 马跃, 王清, 董闯. 高性能软磁合金的研究进展[J]. 材料工程, 2022, 50(3): 69-80.
[8] 余晖, 任军超, 杨鑫, 郭舒龙, 余炜, 冯建航, 殷福星, 辛光善. Zn层添加AZ31/7075合金复合成形工艺及组织与性能研究[J]. 材料工程, 2022, 50(3): 157-165.
[9] 陈维平, 陈焕达, 褚晨亮, 付志强. 粉末冶金(FeNiMnAlx)50Cu50中熵合金的微观组织与力学性能[J]. 材料工程, 2022, 50(10): 55-62.
[10] 邵震, 崔雷, 王东坡, 陈永亮, 胡正根, 王非凡. 几何参数对2219铝合金拉拔式摩擦塞补焊接头微观组织及力学性能的影响[J]. 材料工程, 2022, 50(1): 25-32.
[11] 吕彦龙, 贺建超, 侯金保, 张博贤. 热处理对TiAl/Ti2AlNb放电等离子扩散焊接头微观组织与力学性能的影响[J]. 材料工程, 2021, 49(9): 87-93.
[12] 李安庆, 张立华, 蒋日鹏, 李晓谦, 张昀. 冷却速度及超声振动协同作用对7085铝合金凝固组织及力学性能的影响[J]. 材料工程, 2021, 49(8): 63-71.
[13] 谷籽旺, 郭文敏, 张弘鳞, 李文娟. 基于核壳结构粉体设计的CoNiCrAlY-Al2O3复合涂层组织结构及其抗氧化性能[J]. 材料工程, 2021, 49(7): 112-123.
[14] 于娟, 陆政, 鲁原, 熊艳才, 李国爱, 冯朝辉, 郝时嘉. 中间形变热处理对2A97铝锂合金组织和性能的影响[J]. 材料工程, 2021, 49(5): 130-136.
[15] 武永丽, 熊毅, 陈正阁, 查小琴, 岳赟, 刘玉亮, 张金民, 任凤章. 超音速微粒轰击对TC11钛合金组织和疲劳性能的影响[J]. 材料工程, 2021, 49(5): 137-143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn