Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (3): 66-72    DOI: 10.11868/j.issn.1001-4381.2015.000552
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
5A06铝合金TIG丝材-电弧增材制造工艺
黄丹1,2, 朱志华3, 耿海滨2, 熊江涛2, 李京龙2, 张赋升2
1. 西北工业大学 凝固技术国家重点实验室, 西安 710072;
2. 西北工业大学 摩擦焊接陕西省重点实验室, 西安 710072;
3. 北京航天动力研究所, 北京 100076
TIG Wire and Arc Additive Manufacturing of 5A06 Aluminum Alloy
HUANG Dan1,2, ZHU Zhi-hua3, GENG Hai-bin2, XIONG Jiang-tao2, LI Jing-long2, ZHANG Fu-sheng2
1. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China;
2. Shaanxi Key Laboratory of Friction Welding Technology, Northwestern Polytechnical University, Xi'an 710072, China;
3. Beijing Aerospace Propulsion Institute, Beijing 100076, China
全文: PDF(26548 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 选用φ1.2mm的5A06铝焊丝为成形材料,研究TIG丝材-电弧增材制造工艺。以TIG焊机为电源(交流模式),以四轴联动数控机床为运动机构,研究单层和多层成形时预热温度和电流对成形形貌的影响,观察成形件微观组织,并测试其力学性能。建立了单层单道基板预热温度和电弧峰值电流工艺规范带判据,以保证良好成形。结果表明:成形件的高度从第一层的3.4mm急剧下降,直到第8层后高度稳定在1.7mm。层间组织为细小的树枝晶和等轴晶;层间结合处组织最粗大,为柱状树枝晶;顶部组织最细小,由细小的树枝晶转变为等轴晶。成形件的力学性能各向同性,抗拉强度为295MPa,伸长率为36%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄丹
朱志华
耿海滨
熊江涛
李京龙
张赋升
关键词 TIG丝材-电弧增材制造5A06铝合金成形微观组织力学性能    
Abstract:Wire and arc additive manufacturing(WAAM) was investigated by tungsten inert gas arc welding method(TIG), in which φ1.2mm filler wire of aluminum alloy 5A06(Al-6Mg-Mn-Si) was selected as deposition metal. The prototyping process was conducted by a TIG power source(working in AC mode) manipulated by a four-axis linkage CNC machine. Backplate preheating temperature and arc current on deposited morphologies of single layer and multi-layer were researched. The microstructure was observed and the sample tensile strength was tested. For single layer, a criterion that describes the correlation between backplate preheating temperature and arc peak current, of which both contribute to the smoothening of the deposited layer. The results show that the layer height drops sharply from the first layer of 3.4mm and keeps at 1.7mm after the 8th layer. Fine dendrite grain and equiaxed grain are found inside a layer and coarsest columnar dendrite structure at layer boundary zone; whereas the microstructure of top region of the deposited sample changes from fine dendrite grain to equiaxed grain that turns to be the finest structure. Mechanical property of the deposited sample is isotropic, in which the tensile strength is approximately 295MPa with the elongation around 36%.
Key wordsTIG    WAAM    5A06 aluminum alloy    prototyping    microstructure    mechanical property
收稿日期: 2015-05-04      出版日期: 2017-03-22
中图分类号:  TG455  
通讯作者: 李京龙(1964-),男,教授,博士,从事专业:摩擦焊与增材制造,联系地址:陕西省西安市碑林区友谊西路127号西北工业大学公字楼(710072),E-mail:lijinglg@nwpu.edu.cn     E-mail: lijinglg@nwpu.edu.cn
引用本文:   
黄丹, 朱志华, 耿海滨, 熊江涛, 李京龙, 张赋升. 5A06铝合金TIG丝材-电弧增材制造工艺[J]. 材料工程, 2017, 45(3): 66-72.
HUANG Dan, ZHU Zhi-hua, GENG Hai-bin, XIONG Jiang-tao, LI Jing-long, ZHANG Fu-sheng. TIG Wire and Arc Additive Manufacturing of 5A06 Aluminum Alloy. Journal of Materials Engineering, 2017, 45(3): 66-72.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.000552      或      http://jme.biam.ac.cn/CN/Y2017/V45/I3/66
[1] HERRANZ S, CAMPA F J, DE LACALLE L N L, et al. The milling of airframe components with low rigidity:a general approach to avoid static and dynamic problems[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture,2005,219(11):789-801.
[2] 熊俊. 多层单道GMA增材制造成形特性及熔敷尺寸精确控制[D]. 哈尔滨:哈尔滨工业大学,2014. XIONG J. Forming characteristics in multi-layer single-bead GMA additive manufacturing and accurate control for deposition dimension[D]. Harbin:Harbin Institute of Technology,2014.
[3] MUGHAL M, FAWAD H, MUFTI R, et al. Three-dimensional finite-element modelling of deformation in weld-based rapid prototyping[J]. Journal of Mechanical Engineering Science,2006,220(6):875-885.
[4] 张文钺.焊接冶金学(基本原理)[M]. 北京:机械工业出版社,1996. ZHANG W Y. Welding Metallurgy (Fundamental Principle)[M]. Beijing:China Machine Press,1996.
[5] 刘望兰. 铝合金TIG电弧快速成型工艺的研究[D]. 天津:天津大学,2007. LIU W L. Rapid prototyping technology of Al-alloy parts by AC-TIG[D]. Tianjin:Tianjin University,2007.
[6] OUYANG J H, WANG H, KOVACEVIC R, et al. Rapid prototyping of 5356-aluminum alloy based on variable polarity gas tungsten arc welding process control and microstructure[J]. Materials and Manufacturing Processes,2002,17(1):103-124.
[7] WANG H, JIANG W, OUYANG J H, et al. Rapid prototyping of 4043 Al-alloy parts by VP-GTAW[J]. Journal of Materials Processing Technology,2004,148(1):93-102.
[8] 姜云禄. 基于冷金属过渡技术的铝合金快速成形技术及工艺研究[D]. 哈尔滨:哈尔滨工业大学,2013. JIANG Y L. Research on the rapid prototyping technology and forming process of aluminum alloy based on the CMT[D]. Harbin:Harbin Institute of Technology,2013.
[9] WANG F D, WILLIAMS S, RUSH M, et al. Morphology investigation on direct current pulsed gas tungsten arc welded additive layer manufactured Ti6Al4V alloy[J]. Internal Journal of Advanced Manufacturing Technology,2011,57(5-8):597-603.
[10] BAUFELD B, BIEST O, GAULT R, et al. Microstructure of Ti-6Al-4V specimens produced by shaped metal deposition[J]. International Journal of Materials Research,2009,100(11):1536-1542.
[11] BAUFELD B, BIEST O. Mechanical properties of Ti-6Al-4V specimens produced by shaped metal deposition[J]. Science and Technology of Advanced Materials,2009,10(1):1-10.
[12] BAUFELD B, BIEST O, GAULT R, et al. Additive manufacturing of Ti-6Al-4V components by shaped metal deposition:microstructure and mechanical properties[J]. Materials & Design,2010,31(Suppl 1):106-111.
[13] CLARK D, BACHE M R, WHITTAKER M T, et al. Microstructural characterization of a polycrystalline nickel-based superalloy processed via tungsten-intert-gas-shaped metal deposition[J]. Metallurgical and Materials Transactions B,2010,41(6):1346-1353.
[14] 徐富家, 吕耀辉, 刘玉欣, 等. 脉冲等离子弧快速成形Inconel 625组织性能研究[J]. 材料工程,2012,(11):6-11. XU F J, LV Y H, LIU Y X, et al. Microstructure and mechanical properties of Inconel 625 components deposited by pulse plasma arc rapid prototyping[J]. Journal of Materials Engineering, 2012,(11):6-11.
[15] 刘锦辉, 刘邦涛, 谢雪冬, 等. 高功率光纤激光熔化成形IN718的工艺及性能[J]. 航空材料学报,2015,35(4):1-7. LIU J H, LIU B T, XIE X D, et al. Process and properties of IN718 formed by high-power fiber laser melting[J]. Journal of Aeronautical Materials,2015,35(4):1-7.
[16] BAUFELD B, BIEST O, GAULT R, et al. Microstructure of Ti-6Al-4V specimens produced by shaped metal deposition[J]. International Journal of Materials Research,2009,100(11):1536-1542.
[17] WANG F D, WILLIAMS S, COLEGROVE P, et al. Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V[J]. Metallurgical and Materials Transactions A,2013,44(2):968-977.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[3] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[4] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[5] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[6] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[7] 赵强, 祝文卉, 邵天巍, 帅焱林, 刘佳涛, 王冉, 张利, 梁晓波. Ti-22Al-25Nb合金惯性摩擦焊接头显微组织与力学性能[J]. 材料工程, 2020, 48(6): 140-147.
[8] 石磊, 雷力明, 王威, 付鑫, 张广平. 热等静压/热处理工艺对激光选区熔化成形GH4169合金微观组织与拉伸性能的影响[J]. 材料工程, 2020, 48(6): 148-155.
[9] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[10] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[11] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[12] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[13] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[14] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[15] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn