Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (3): 88-94    DOI: 10.11868/j.issn.1001-4381.2015.001454
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
SiC含量对激光熔覆SiC/Ni60A复合涂层显微组织和耐磨性能的影响
赵龙志1,2, 刘武1, 刘德佳1, 赵明娟1, 张坚1
1. 华东交通大学 材料科学与工程学院, 南昌 330013;
2. 哈尔滨工程大学 超轻材料与表面技术教育部重点 实验室, 哈尔滨 150001
Effect of SiC Content on Microstructure and Wear Resistance of Laser Cladding SiC/Ni60A Composite Coating
ZHAO Long-zhi1,2, LIU Wu1, LIU De-jia1, ZHAO Ming-juan1, ZHANG Jian1
1. School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China;
2. Key Laboratory of Superlight Materials & Surface Technology(Ministry of Education), Harbin Engineering University, Harbin 150001, China
全文: PDF(17827 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 利用LDM2500-60半导体激光器在45#钢板上制备SiC颗粒增强Ni60A合金激光熔覆涂层,系统研究SiC含量对涂层的显微组织、稀释率、耐磨性、摩擦因数和显微硬度的作用规律。结果表明:随着SiC含量增加,熔覆表层的微观组织细化,稀释率、耐磨性、摩擦因数和硬度均先增加后降低;当SiC含量为20%(质量分数,下同)时,熔覆层的耐磨性能最佳,磨损量仅为0.0012g,为基体磨损量的1/36.3;摩擦因数最小为0.464,且磨损过程最为平稳;熔覆层平均硬度值最高,达到1039.9HV0.2,为基体的3.5倍;但当SiC含量达到25%时,熔覆层的显微硬度与耐磨性能反而下降。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵龙志
刘武
刘德佳
赵明娟
张坚
关键词 激光熔覆SiC显微组织显微硬度耐磨性能    
Abstract:The SiC reinforced Ni60A alloy laser cladding coating on the 45 steel substrate was fabricated with the LDM2500-60 semiconductor laser equipment. The effect of SiC content on microstructure, dilution rate, wear resistance, friction coefficient and microhardness was investigated systematically.The results show that with the increase of SiC content, the microstructure of upper coating is refined obviously, the dilution rate, wear resistance, friction coefficient and microhardness increase firstly and then decrease;when the mass fraction of SiC is 20%, the wear resistance of the cladding coating is the best one, in which the wear loss of coating is only 0.0012g and is 1/36.3 of the matrix;the minimum friction coefficient is 0.464, the friction process is the most stable;the highest microhardness of the cladding coating is 1039.9HV0.2, which is 3.5 times of the substrate;but when the mass fraction of SiC is 25%, the microhardness and wear resistance of coating decrease.
Key wordslaser cladding    SiC    microstructure    microhardness    wear resistance
收稿日期: 2015-11-26      出版日期: 2017-03-22
中图分类号:  TG156.99  
  TG174.44  
通讯作者: 赵龙志(1977-),男,博士,教授,硕士生导师,主要从事陶瓷/金属基复合材料和激光成形等方面的研究,联系地址:江西省南昌市双港东大街808号华东交通大学(330013),E-mail:zhaolongzhi@163.com     E-mail: zhaolongzhi@163.com
引用本文:   
赵龙志, 刘武, 刘德佳, 赵明娟, 张坚. SiC含量对激光熔覆SiC/Ni60A复合涂层显微组织和耐磨性能的影响[J]. 材料工程, 2017, 45(3): 88-94.
ZHAO Long-zhi, LIU Wu, LIU De-jia, ZHAO Ming-juan, ZHANG Jian. Effect of SiC Content on Microstructure and Wear Resistance of Laser Cladding SiC/Ni60A Composite Coating. Journal of Materials Engineering, 2017, 45(3): 88-94.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.001454      或      http://jme.biam.ac.cn/CN/Y2017/V45/I3/88
[1] 王广达,方玉诚,罗锡裕.高速列车摩擦制动材料的研究进展[J].中国冶金,2007,17(7):12-15. WANG G D, FANG Y C, LUO X Y. Research and development of materials for friction braking on high speed train[J]. China Metallurgy, 2007, 17(7):12-15.
[2] 王开,刘昌明,杨勇.制动盘材料构成设计过程热应力分析[J].重庆大学学报,2008,31(12):1346-1350. WANG K, LIU C M, YANG Y. Brake disc thermal stress in material composite design[J]. Journal of Chongqing University, 2008, 31(12):1346-1350.
[3] ZHAO L Z, ZHAO M J, LI D Y, et al. Study on Fe-Al-Si in situ composite coating fabricated by laser cladding[J]. Applied Surface Science, 2012, 258:3368-3372.
[4] 陈建敏,王凌倩,周健松,等.激光熔覆Ni基涂层研究进展[J].中国表面工程,2011,24(2):13-21. CHEN J M, WANG L Q, ZHOU J S,et al.Research progress of clad Ni-based coating[J].China Surface Engineering, 2011, 24(2):13-21.
[5] QU P, MA Y J, ZHAO J G, et al. Microstructure and performance of in-situ synthesis Ti(C,N)-WC/Ni60A matrix composites coating[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(10):73-81.
[6] 马世榜,苏彬彬,王旭,等.基于激光熔覆SiC/Ni复合涂层的耐磨性[J].材料工程,2016,44(1):77-82. MA S B, SU B B, WANG X, et al. Wear resistance of SiC/Ni composite coatings based on laser cladding[J]. Journal of Materials Engineering, 2016,44(1):77-82.
[7] KANG K H, EUN T, JUN M C, et al. Governing factors for the formation of 4H or 6H-SiC polytype during SiC crystal growth:an atomistic computational approach[J]. Journal of Crystal Growth, 2014, 389(2):120-133.
[8] 吴萍,姜恩永,赵慈,等.激光参数对Ni基熔覆层结构及耐磨性的影响[J].焊接学报,2003,24(2):45-50. WU P, JIANG E Y, ZHAO C, et al. Effect of laser parameters on structure and wear resistance of Ni based cladding layer[J]. Transactions of the China Welding Institution, 2003, 24(2):45-50.
[9] 徐斌, 楼白杨, 白万金,等. 激光熔覆制备SiC/Ni基复合涂层及其耐冲蚀性能[J].中国激光, 2008, 35(1):147-150. XU B, LOU B Y, BAI W J, et al. Synthesis of SiC/Ni composite coatings by laser cladding and property of erosion resistance[J]. Chinese Journal of Lasers, 2008, 35(1):147-150.
[10] ZHANG J, YU H, TAN X J, et al. Microstructure and high temperature tribological behavior of laser cladding Ni60A alloys coatings on 45 steel substrate[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(5):1525-1532.
[11] SHAFIRSTIEN G, BAMBERGER M, LANGOHR M,et al. Laser surface alloying of carbon steel and α-Fe with CrB2[J]. Surface and Coatings Technology, 1991, 45(1-3):417-423.
[12] ZHOU S F, HUANG Y J, ZENG X Y.Effects of processing parameters on structure of Ni-based WC composite coatings during laser induction hybrid rapid cladding[J]. Applied Surface Science, 2009, 255(3):8494-8500.
[13] 戎磊, 黄坚, 李铸国,等. 激光熔覆WC颗粒增强Ni基合金涂层的组织与性能[J]. 中国表面工程, 2010,23(6):40-44. RONG L, HUANG J, LI Z G,et al.Microstructure and property of laser cladding Ni-based alloy coating reinforced by WC particles[J]. China Surface Engineering, 2010, 23(6):40-44.
[14] 梁二军,梁会琴,晁明举,等.三种形态WC对Ni60激光熔覆层的不同影响[J].激光杂志,2006,27(2):66-68. LIANG E J, LIANG H Q, CHAO M J, et al. Effect of three types of WC on the laser cladding layers of Ni60 alloy[J]. Laser Journal, 2006, 27(2):66-68.
[15] 谢淞京,白万金,姚建华.激光熔覆Ni/SiC金属陶瓷涂层组织与耐磨性能[J].金属热处理,2006,31(11):19-22. XIE S J, BAI W J, YAO J H. Microstructure and wear resistance of laser clad Ni/SiC ceramic coating[J]. Heat Treatment of Metals, 2006, 31(11):19-22.
[16] 束成祥,李晓阳,余晓琴,等.反应烧结碳化硅陶瓷材料的摩擦磨损性能[J].理化检验-物理分册,2013,49(9):589-592. SHU C X, LI X Y, YU X Q, et al. Friction and wear properties of reaction sintered silicon carbide ceramic[J]. PTCA(PARTA:PHYS.TEST.), 2013, 49(9):589-592.
[17] 唐汉玲,曾燮榕,熊信柏,等.短切碳纤维含量对Csf/SiC复合材料摩擦磨损性能的影响[J].材料科学与工程学报, 2008, 26(4):501-505. TANG H L, ZENG X R, XIONG X B, et al. Effect of short carbon fibers content on the tribological property of Csf/SiC composite[J]. Journal of Materials Science & Engineering, 2008, 26(4):501-505.
[18] 韩文静,张培训,汤其建,等. 单体液压支柱缸体激光熔覆Ni60A+20%WC性能[J]. 煤炭学报, 2012, 37(2):340-343. HAN W J, ZHANG P X, TANG Q J,et al.Property of laser cladded Ni60A+20%WC alloy of cylinder of single hydraulic support[J]. Journal of China Coal Society, 2012, 37(2):340-343.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[3] 赵强, 祝文卉, 邵天巍, 帅焱林, 刘佳涛, 王冉, 张利, 梁晓波. Ti-22Al-25Nb合金惯性摩擦焊接头显微组织与力学性能[J]. 材料工程, 2020, 48(6): 140-147.
[4] 丁楚珩, 侯甲彬, 夏龙, 张昕宇, 钟博, 张涛. SiCNW-Cf/LAS复合材料的制备和电磁波吸收性能[J]. 材料工程, 2020, 48(5): 41-48.
[5] 赵辉, 赵菲, 杨长龙, 韩钰, 靳东, 李红英. 时效处理对Al-Zr-Sc(-Er)合金组织和性能的影响[J]. 材料工程, 2020, 48(5): 112-119.
[6] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[7] 刘成, 彭志方, 彭芳芳, 陈方玉, 刘省. P92钢625℃持久实验过程中试件特征部位相参量的变化[J]. 材料工程, 2020, 48(3): 98-104.
[8] 李国伟, 梁亚红, 陈芙蓉, 韩永全. 7075铝合金脉冲变极性等离子弧焊接头的双级时效行为[J]. 材料工程, 2020, 48(2): 140-147.
[9] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[10] 唐鹏钧, 房立家, 杨斌, 陈冰清, 李沛勇, 张学军. 激光选区熔化AlSi7MgTi合金显微组织与性能[J]. 材料工程, 2020, 48(11): 116-123.
[11] 宋立奇, 史运嘉, 蔡彬, 叶大萌, 李梦佳, 连娟. 激光选区熔化成形制备高强Al-Mg-Sc合金的组织与性能[J]. 材料工程, 2020, 48(11): 124-130.
[12] 徐昀华, 张春华, 张松, 乔瑞庆, 张静波. 激光增材制造24CrNiMo合金钢显微组织特征[J]. 材料工程, 2020, 48(11): 147-154.
[13] 高晔, 焦健. NITE工艺制备SiCf/SiC复合材料的研究进展[J]. 材料工程, 2019, 47(8): 33-39.
[14] 韩梅, 喻健, 李嘉荣, 谢洪吉, 董建民, 杨岩. 喷丸对DD6单晶高温合金拉伸性能的影响[J]. 材料工程, 2019, 47(8): 169-175.
[15] 刘文祎, 徐聪, 刘茂文, 肖文龙, 马朝利. 稀土元素Gd对Al-Si-Mg铸造合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(6): 129-135.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn