Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (4): 102-107    DOI: 10.11868/j.issn.1001-4381.2015.000479
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
细编穿刺织物的数学建模理论与实例
周钰博1, 李艳霞1, 李敏1, 顾轶卓1, 张佐光1, 宋永忠2, 余立琼2, 程家2
1. 北京航空航天大学 材料科学与工程学院 空天材料与服役教育部重点实验室, 北京 100191;
2. 航天材料及工艺研究所, 北京 100076
Theory and Examples of Mathematical Modeling for Fine Weave Pierced Fabric
ZHOU Yu-bo1, LI Yan-xia1, LI Min1, GU Yi-zhuo1, ZHANG Zuo-guang1, SONG Yong-zhong2, YU Li-qiong2, CHENG Jia2
1. Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191, China;
2. Aerospace Research Institute of Materials & Processing Technology, Beijing 100076, China
全文: PDF(2436 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 针对细编穿刺织物,采用具有参数连续性的样条线作为纤维丝束的轨迹特性函数,建立了三维立体织物结构的数学抽象与三维建模方法。基于MicroCT方法实际测量的细编穿刺织物结构特征参数,采用四种丝束轨迹特性函数和两种丝束截面建 立了八种穿刺织物结构的三维数字模型,通过丝束结构与孔隙率的对比,三维数字模型与织物真实结构符合较好。该织物结构数学抽象与三维建模方法,可用于小尺度的亚单胞模型与大尺度的宏观模型分析,具有较高的适应性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周钰博
李艳霞
李敏
顾轶卓
张佐光
宋永忠
余立琼
程家
关键词 细编穿刺织物预成型体数学抽象计算机建模    
Abstract:A mathematical abstraction and three-dimensional modeling method of three-dimensional woven fabric structure was developed for the fine weave pierced fabric, taking parametric continuity splines as the track function of tow. Based on the significant parameters of fine weave pierced fabric measured by MicroCT, eight kinds of the three-dimensional digital models of the fabric structure were established with two kinds of tow sections and four kinds of tow trajectory characteristic functions. There is a good agreement between the three-dimensional digital models and real fabric by comparing their structures and porosities. This mathematical abstraction and three-dimensional modeling method can be applied in micro models for sub unit cell and macro models for macroscopic scale fabrics, with high adaptability.
Key wordsfine weave pierced fabric    preform    mathematical abstraction    computer modeling
收稿日期: 2015-04-23      出版日期: 2017-04-17
中图分类号:  TB33  
通讯作者: 李艳霞(1977-),女,讲师,研究方向:树脂基复合材料成型工艺及数值模拟研究,联系地址:北京市海淀区学院路37号北京航空航天大学材料学院104教研室(100191),E-mail:liyanxia@buaa.edu.cn      E-mail: liyanxia@buaa.edu.cn
引用本文:   
周钰博, 李艳霞, 李敏, 顾轶卓, 张佐光, 宋永忠, 余立琼, 程家. 细编穿刺织物的数学建模理论与实例[J]. 材料工程, 2017, 45(4): 102-107.
ZHOU Yu-bo, LI Yan-xia, LI Min, GU Yi-zhuo, ZHANG Zuo-guang, SONG Yong-zhong, YU Li-qiong, CHENG Jia. Theory and Examples of Mathematical Modeling for Fine Weave Pierced Fabric. Journal of Materials Engineering, 2017, 45(4): 102-107.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.000479      或      http://jme.biam.ac.cn/CN/Y2017/V45/I4/102
[1] 于倩倩,陈刚,郑志才. 缝合技术在复合材料上的应用及研究进展[J]. 工程塑料应用, 2009,37(5): 85-88. YU Q Q, CHEN G, ZHENG Z C. Application and review of research in stiching technology for composites[J]. Engineering Plastics Application, 2009,37(5): 85-88.
[2] 朱建勋. 细编穿刺织物的结构特点及性能[J]. 宇航材料工艺, 1998,(1): 41-43. ZHU J X. The structural characteristics and properties of fine weave pierced fabric[J]. Aerospace Materials & Technology, 1998,(1): 41-43.
[3] 朱建勋. 碳布整体穿刺织物编织工艺与结构参数优化[D]. 南京: 东南大学, 2003. ZHU J X. The optimization of knitting technology and structure parameters for integrated piercing carbon fabric[D]. Nanjing: Southeast University, 2003.
[4] 方国东,梁军,王裕. 利用有限元方法对细编穿刺复合材料进行有效性能预报[C]// 第十五届全国复合材料学术会议.哈尔滨: 中国力学协会, 2008:1397-1401. FANG G D,LIANG J,WANG Y. The finite element analysis of mechanical properties of fine woven pierced composites [C]//15th National Conference on Composite Materials.Harbin: Chinese Society of Theoretical and Applied Mechanics, 2008:1397-1401.
[5] 陈盛洪. 细编穿刺C/C复合材料热物理性能的模拟研究[D]. 哈尔滨: 哈尔滨工业大学, 2008. CHEN S H. Simulation on thermal physical properties of fine weave pierced C/C composite[D]. Harbin: Harbin Institute of Technology, 2008.
[6] PEIRCE F T. The geometry of cloth structure[J]. Journal of the Textile Institute Transactions, 1937, 28(3): T45-T96.
[7] OKUMURA T, YOKOYAMA A, NAGAI K, et al. Optimum design of weaving structure of 3-D woven fabric composites by using genetic algorithms[J]. Composite Structures, 1995, 32(1-4): 417-426.
[8] STIG F, HALLSTR M S. Influence of crimp on 3D-woven fibre reinforced composites[J]. Composite Structures, 2013, 95: 114-122.
[9] 燕瑛,成传贤. 基于细观结构的三维机织复合材料弹性性能的分析[J]. 航空学报, 1999,28(4): 2-6. YAN Y, CHENG C X. Analysis of elastic property for 3-D woven composites based on fabric microstructure[J]. Acta Aeronautica et Astronautica Sinica, 1999,28(4): 2-6.
[10] ZENG X, BROWN L P, ENDRUWEIT A, et al. Geometrical modelling of 3D woven reinforcements for polymer composites: Prediction of fabric permeability and composite mechanical properties[J]. Composites Part A: Applied Science and Manufacturing, 2014, 56: 150-160.
[11] 杨波,金天国,郑龙. 微-细双尺度单胞下织物预成型体渗透率预测[J]. 复合材料学报, 2013,30(5): 209-217. YANG B, JIN T G, ZHENG L. Permeability prediction for textile preform with micro-meso dual-scale unit cell[J]. Acta Materiae Compositae Sinica, 2013,30(5): 209-217.
[12] SIDDIQUI M O R, SUN D. Finite element analysis of thermal conductivity and thermal resistance behaviour of woven fabric[J]. Computational Materials Science, 2013, 75: 45-51.
[13] WENDLING A, HIVET G, VIDAL-SALLÉ E, et al. Consistent geometrical modelling of interlock fabrics[J]. Finite Elements in Analysis and Design, 2014, 90: 93-105.
[14] 丁辛,易洪雷. 三维机织几何结构的数值表征[J]. 东华大学学报(自然科学版), 2003,29(3): 15-19. DING X, YI H L. Representation of geometric architecture of three-dimensional woven structures by numerical method[J]. Journal of Donghua University(Natural Science),2003,29(3): 15-19.
[15] 丁辛,易洪雷. 三维机织结构的几何模型[J]. 复合材料学报, 2003,20(5): 108-113. DING X, YI H L. A geometric model of three dimensional woven structures[J]. Acta Materiae Compositae Sinica, 2003,20(5): 108-113.
[16] 杨彩云,李嘉禄. 基于纱线真实形态的三维机织复合材料细观结构及其厚度计算[J]. 复合材料学报, 2005,22(6): 178-182. YANG C Y, LI J L. Microstructure and thickness equation of 3D woven composites based on yarn’s true configuration [J]. Acta Materiae Compositae Sinica, 2005,22(6): 178-182.
[1] 韩振宇, 梅海洋, 付云忠, 富宏亚. 三维编织预成型体的织造及三维编织复合材料细观结构研究进展[J]. 材料工程, 2018, 46(11): 25-36.
[2] 高娟娟, 张佐光, 梁子青, 唐邦铭, 益小苏. 织物预成型体厚度方向渗透特性研究[J]. 材料工程, 2006, 0(9): 20-22,63.
[3] 梁子青, 唐邦铭, 李艳亮, 益小苏. 织物预成型体的可压缩性研究[J]. 材料工程, 2006, 0(6): 5-8,45.
[4] 于育强, 张佐光, 唐邦铭, 梁子青. 织物预成型体毛细作用研究[J]. 材料工程, 2006, 0(6): 20-23,32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn