Please wait a minute...
材料工程  2017, Vol. 45 Issue (4): 128-136    DOI: 10.11868/j.issn.1001-4381.2016.000315
  综述 本期目录 | 过刊浏览 | 高级检索 |
陶静梅, 洪鹏, 陈小丰, 易健宏
昆明理工大学 材料科学与工程学院, 昆明 650093
Research Progress on Carbon Nanotubes Reinforced Cu-matrix Composites
TAO Jing-mei, HONG Peng, CHEN Xiao-feng, YI Jian-hong
Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
全文: PDF(1813 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 本文针对碳纳米管增强铜基复合材料研究中的关键问题进行了综述。对碳纳米管增强铜基复合材料的制备技术进行了分类,总结了粉末冶金法、电化学法以及其他方法的研究进展,并强调了制备方法和复合材料性能之间的关系。分析了碳纳米管增强铜基复合材料的界面特征,并概述和总结了其力学性能、电学性能、热学性能、摩擦磨损性能等方面的研究进展和存在问题。指出改善复合材料的制备方法,获得分散均匀的碳纳米管且与铜基体结合良好的复合材料是提高其综合性能的关键。
E-mail Alert
关键词 碳纳米管铜基复合材料制备界面性能    
Abstract:The critical issues of CNTs/Cu composites were reviewed. The preparation techniques of the composites were classified, and the research progress on powder metallurgic methods, electrochemical methods and other methods was summarized, with an emphasis on the relationship between preparation methods and properties. The interfacial characteristic of the CNTs/Cu composites was analyzed, and the research progress and existing problems of mechanical properties, electrical properties, thermal properties and wear and friction properties of the composites were also summarized. It was pointed out that the key to increase the comprehensive properties of the composites is to obtain the homogeneous distribution of CNTs and good interfacial bonding between CNTs and the Cu matrix by improving the preparation methods.
Key wordsCNTs    copper matrix composite    preparation    interface    property
收稿日期: 2016-03-18      出版日期: 2017-04-17
中图分类号:  TB331  
通讯作者: 易健宏(1965-),男,博士,教授,研究方向:粉末冶金,联系地址:云南省昆明市学府路293号昆明理工大学材料科学与工程学院(650093),     E-mail:
陶静梅, 洪鹏, 陈小丰, 易健宏. 碳纳米管增强铜基复合材料的研究进展[J]. 材料工程, 2017, 45(4): 128-136.
TAO Jing-mei, HONG Peng, CHEN Xiao-feng, YI Jian-hong. Research Progress on Carbon Nanotubes Reinforced Cu-matrix Composites. Journal of Materials Engineering, 2017, 45(4): 128-136.
链接本文:      或
[1] ROTH S, CARROLL D. One-dimensional Metals: Conjugated Polymers, Organic Crystals, Carbon Nanotubes and Graphene[M]. Weinheim: John Wiley & Sons, 2015.
[2] 易健宏, 杨平, 沈韬. 碳纳米管增强金属基复合材料电学性能研究进展[J]. 复合材料学报, 2016, 33(4):689-703. YI J H, YANG P, SHEN T. Research progress of electrical properties for carbon nanotubes reinforced metal matrix composites[J]. Acta Materiae Compositae Sinica, 2016, 33(4):689-703.
[3] 何天兵, 胡仁伟, 何晓磊,等. 碳纳米管增强金属基复合材料的研究进展[J]. 材料工程, 2015, 43(10):91-101. HE T B, HU R W, HE X L, et al. Progress in research on carbon nanotube reinforced metal matrix composites[J]. Journal of Materials Engineering, 2015, 43(10):91-101.
[4] ZHAO S, ZHENG Z, HUANG Z, et al. Cu matrix composites reinforced with aligned carbon nanotubes: mechanical, electrical and thermal properties[J]. Materials Science & Engineering:A, 2016, 675:82-91.
[5] ZARE H, JAHEDI M, TOROGHINEJAD M R, et al. Compressive, shear, and fracture behavior of CNT reinforced Al matrix composites manufactured by severe plastic deformation[J]. Materials & Design, 2016, 106:112-119.
[6] LI C D, WANG X J, LIU W Q, et al. Microstructure and strengthening mechanism of carbon nanotubes reinforced magnesium matrix composite[J]. Materials Science & Engineering: A, 2014, 597:264-269.
[7] KONDOH K, THRERUJIRAPAPONG T, UMEDA J, et al. High-temperature properties of extruded titanium composites fabricated from carbon nanotubes coated titanium powder by spark plasma sintering and hot extrusion[J]. Composites Science & Technology, 2012, 72(11):1291-1297.
[8] De VOLDER M F L, TAWFICK S H, BAUGHMAN R H, et al. Carbon nanotubes: present and future commercial applications[J]. Science, 2013, 339(6119): 535-539.
[9] HABISREUTINGER S N, LEIJTENS T, EPERON G E, et al. Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells[J]. Nano Letters, 2014, 14(10): 5561-5568.
[10] 卢少微, 冯春林, 聂鹏, 等. 碳纳米管用于聚合物基复合材料健康监测的研究进展[J].航空材料学报, 2015, 35(2): 12-20. LU S W, FENG C L, NIE P, et al.Progress on carbon nanotubes in health monitoring of polymer composites[J].Journal of Aeronautical Materials, 2015, 35(2): 12-20.
[11] BIRCH E M, RUDA A T E, CHAI M, et al. Properties that influence the specific surface areas of carbon nanotubes and nanofibers.[J]. Annals of Occupational Hygiene, 2013, 57(9):1148-1166.
[12] DONG S R, TU J P, ZHANG X B. An investigation of the sliding wear behavior of Cu-matrix composite reinforced by carbon nanotubes[J]. Materials Science and Engineering: A, 2001, 313(1): 83-87.
[13] TU J P, YANG Y Z, WANG L Y, et al. Tribological properties of carbon-nanotube-reinforced copper composites[J]. Tribology Letters, 2001, 10(4): 225-228.
[14] CHEN W X, TU J P, WANG L Y, et al. Tribological application of carbon nanotubes in a metal-based composite coating and composites[J]. Carbon, 2003, 41(2): 215-222.
[15] CHEN X H, LI W H, CHEN C S, et al. Preparation and properties of Cu matrix composite reinforced by carbon nanotubes[J]. Transactions of Nonferrous Metals Society of China, 2005, 15(2): 314-318.
[16] KIM K T, CHA S I, HONG S H. Hardness and wear resistance of carbon nanotube reinforced Cu matrix nanocomposites[J]. Materials Science and Engineering: A, 2007, 449: 46-50.
[17] KIM K T, CHA S I, HONG S H. Microstructures and tensile behavior of carbon nanotube reinforced Cu matrix nanocomposites[J]. Materials Science and Engineering: A, 2006, 430: 27-33.
[18] CHA S I, KIM K T, ARSHAD S N, et al. Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing[J]. Advanced Materials, 2005, 17(11): 1377-1381.
[19] LI Y H, HOUSTEN W, ZHAO Y, et al. Cu/single-walled carbon nanotube laminate composites fabricated by cold rolling and annealing[J]. Nanotechnology, 2007, 18(20): 205607.
[20] DAOUSH W M, LIM B K, MO C B, et al. Electrical and mechanical properties of carbon nanotube reinforced copper nanocomposites fabricated by electroless deposition process[J]. Materials Science and Engineering: A, 2009, 513: 247-253.
[21] BAKSHI S R, LAHIRI D, AGARWAL A. Carbon nanotube reinforced metal matrix composites-a review[J]. International Materials Reviews, 2010, 55(1): 41-64.
[22] LIM B, KIM C, KIM B, et al. The effects of interfacial bonding on mechanical properties of single-walled carbon nanotube reinforced copper matrix nanocomposites[J]. Nanotechnology, 2006, 17(23): 5759-5764.
[23] KIM K T, LEE K H, CHA S I, et al. Characterization of carbon nanotubes/Cu nanocomposites processed by using nano-sized Cu powders[J]. Mrs Online Proceeding Library, 2011,821: 3.25.1-3.25.6.
[24] JUNG G, NAH C W, SEO M K, et al. Influence of acid and base surface treatment of multi-walled carbon nanotubes on mechanical interfacial properties of carbon fibers-reinforced composites[J]. Polymer Korea, 2012, 36(5):612-616.
[25] DENG C F, WANG D Z, ZHANG X X, et al. Processing and properties of carbon nanotubes reinforced aluminum composites[J]. Materials Science and Engineering: A, 2007, 444(1-2):138-145.
[26] ZHONG R, CONG H, HOU P. Fabrication of nano-Al based composites reinforced by single-walled carbon nanotubes[J]. Carbon, 2003, 41(4): 848-851.
[27] HULBERT D M, ANDERS A, ANDERSSON J, et al. A discussion on the absence of plasma in spark plasma sintering[J]. Scripta Materialia, 2009, 60(10): 835-838.
[28] KWON H, ESTILI M, TAKAGI K, et al. Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites[J]. Carbon, 2009, 47(3): 570-577.
[29] QUANG P, JEONG Y G, YOON S C, et al. Consolidation of 1 vol.% carbon nanotube reinforced metal matrix nanocomposites via equal channel angular pressing[J]. Journal of Materials Processing Technology, 2007, 187-188(4): 318-320.
[30] PHAM Q, JEONG Y G, YOON S C, et al. Carbon nanotube reinforced metal matrix nanocomposites via equal channel angular pressing[J]. Materials Science Forum, 2007, 534: 245-248.
[31] DONG S R, ZHANG X B. Mechanical properties of Cu based composites reinforced by carbon nanotubes[J]. Transactions of Nonferrous Metals Society of China, 1999, 9(3): 457-461.
[32] PHAM Q, JEONG Y G, HONG S H, et al. Equal channel angular pressing of carbon nanotube reinforced metal matrix nanocomposites[J]. Key Engineering Materials, 2006, 326-328: 245-248.
[33] YOO S J, HAN S H, KIM W J. A combination of ball milling and high-ratio differential speed rolling for synthesizing carbon nanotube/copper composites[J]. Carbon, 2013, 61(11): 487-500.
[34] YOON E Y, LEE D J, PARK B, et al. Grain refinement and tensile strength of carbon nanotube-reinforced Cu matrix nanocomposites processed by high-pressure torsion[J]. Metals and Materials International, 2013, 19(5): 927-932.
[35] ARAI S, FUJIMORI A, MURAI M, et al. Excellent solid lubrication of electrodeposited nickel-multiwalled carbon nanotube composite films[J]. Materials Letters, 2008, 62(20): 3545-3548.
[36] BORKAR T, HARIMKAR S. Microstructure and wear behaviour of pulse electrodeposited Ni-CNT composite coatings[J]. Surface Engineering, 2013, 27(7):524-530.
[37] ARAI S, ENDO M, KANEKO N. Ni-deposited multi-walled carbon nanotubes by electrodeposition[J]. Carbon, 2004, 42(3): 641-644.
[38] ARAI S, MIYAGAWA K. Frictional and wear properties of cobalt/multiwalled carbon nanotube composite films formed by electrodeposition[J]. Surface and Coatings Technology, 2013, 235: 204-211.
[39] CHEN X H, PENG J C, LI X Q, et al. Tribological behavior of carbon nanotubes-reinforced nickel matrix composite coatings[J]. Journal of Materials Science Letters, 2001, 20(22): 2057-2060.
[40] CHEN X H, CHENG F Q, LI S L, et al. Electrodeposited nickel composites containing carbon nanotubes[J]. Surface and Coatings Technology, 2002, 155(2): 274-278.
[41] CARPENTER C R, SHIPWAY P H, ZHU Y. Electrodeposition of nickel-carbon nanotube nanocomposite coatings for enhanced wear resistance[J]. Wear, 2011, 271(9): 2100-2105.
[42] CHEN X H, CHEN C S, XIAO H N, et al. Corrosion behavior of carbon nanotubes-Ni composite coating[J]. Surface and Coatings Technology, 2005, 191(2-3): 351-356.
[43] SHI Y L, YANG Z, LI M K, et al. Electroplated synthesis of Ni-P-UFD, Ni-P-CNTs, and Ni-P-UFD-CNTs composite coatings as hydrogen evolution electrodes[J]. Materials Chemistry and Physics, 2004, 87(1): 154-161.
[44] XUE R, WU Y. Mechanism and microstructure of electroless Ni-Fe-P plating on CNTs[J]. Journal of China University of Mining and Technology, 2007, 17(3): 424-427.
[45] ALISHAHI M, MONIRVAGHEFI S M, SAATCHI A, et al. The effect of carbon nanotubes on the corrosion and tribological behavior of electroless Ni-P-CNT composite coating[J]. Applied Surface Science, 2012, 258(7):2439-2446.
[46] XU S, HU X, YANG Y, et al. Effect of carbon nanotubes and their dispersion on electroless Ni-P under bump metallization for lead-free solder interconnection[J]. Journal of Materials Science: Materials in Electronics, 2014, 25(6):2682-2691.
[47] DAOUSH W M, LIM B K, MO C B, et al. Electrical and mechanical properties of carbon nanotube reinforced copper nanocomposites fabricated by electroless deposition process[J]. Materials Science and Engineering: A, 2009, 513-514(11):247-253.
[48] PING C, LI F, JIAN Z, et al. Preparation of Cu/CNT composite particles and catalytic performance on thermal decomposition of ammonium perchlorate[J]. Propellants, Explosives, Pyrotechnics, 2006, 31(6): 452-455.
[49] KIM K T, ECKERT J, LIU G, et al. Influence of embedded-carbon nanotubes on the thermal properties of copper matrix nanocomposites processed by molecular-level mixing[J]. Scripta Materialia, 2011, 64(2): 181-184.
[50] KIM K T, CHA S I, GEMMING T, et al. The role of interfacial oxygen atoms in the enhanced mechanical properties of carbon-nanotube-reinforced metal matrix nanocomposites[J]. Small, 2008, 4(11): 1936-1940.
[51] CHEN W X, LEE J Y, LIU Z. The nanocomposites of carbon nanotube with Sb and SnSb 0.5 as Li-ion battery anodes[J]. Carbon, 2003, 41(5): 959-966.
[52] HUANG W, CHEN H, ZUO J M. One-dimensional self-assembly of metallic nanostructures on single-walled carbon-nanotube bundles[J]. Small, 2006, 2(12): 1418-1421.
[53] KANG T J, YOON J W, KIM D I, et al. Sandwich-type laminated nanocomposites developed by selective dip-coating of carbon nanotubes[J].Advanced Materials,2007,19(3):427-432.
[54] HONG S, MYUNG S. Nanotube electronics: a flexible approach to mobility[J]. Nature Nanotechnology, 2007, 2(4): 207-208.
[55] SAITO R, DRESSELHAUS G, DRESSELHAUS M S. Physical Properties of Carbon Nanotubes[M]. London: Imperial College Press, 1998.
[56] YAO Y, DAI X, FENG C, et al. Crinkling ultralong carbon nanotubes into serpentines by a controlled landing process[J]. Advanced Materials, 2009, 21(41): 4158-4162.
[57] SUBRAMANIAM C, YAMADA T, KOBASHI K, et al. One hundred fold increase in current carrying capacity in a carbon nanotube-copper composite[J]. Nature Communications, 2013, 4(3):2202-2208.
[58] BIERCUK M J, LLAGUNO M C, RADOSAVLJEVIC M, et al. Carbon nanotube composites for thermal management[J]. Applied Physics Letters, 2002, 80(15): 2767-2769.
[59] DENG C F, MA Y X, ZHANG P, et al. Thermal expansion behaviors of aluminum composite reinforced with carbon nanotubes[J]. Materials Letters, 2008, 62(15): 2301-2303.
[60] CHE J, CAGIN T, GODDARD Ⅲ W A. Thermal conductivity of carbon nanotubes[J]. Nanotechnology, 2000, 11(2): 65-69.
[61] BERBER S, KWON Y K, TOMANEK D. Unusually high thermal conductivity of carbon nanotubes[J]. Physical Review Letters, 2000, 84(20): 4613-4616.
[62] TANG Y, CONG H, ZHONG R, et al. Thermal expansion of a composite of single-walled carbon nanotubes and nanocrystalline aluminum[J]. Carbon, 2004, 42(15): 3260-3262.
[63] CHO S, KIKUCHI K, MIYAZAKI T, et al. Multiwalled carbon nanotubes as a contributing reinforcement phase for the improvement of thermal conductivity in copper matrix composites[J]. Scripta Materialia, 2010, 63(4): 375-378.
[64] ZHANG H L, LI J F, YAO K F, et al. Spark plasma sintering and thermal conductivity of carbon nanotube bulk materials[J]. Journal of Applied Physics, 2005, 97(11): 114310.
[65] Van TRINH P, TRUNG T B, THANG N B, et al. Calculation of the friction coefficient of Cu matrix composite reinforced by carbon nanotubes[J]. Computational Materials Science, 2010, 49(4): 239-241.
[66] CHEN X, ZHANG G, CHEN C, et al. Carbon nanotube composite deposits with high hardness and high wear resistance[J]. Advanced Engineering Materials, 2003, 5(7): 514-518.
[67] KIM C, LIM B, KIM B, et al. Strengthening of copper matrix composites by nickel-coated single-walled carbon nanotube reinforcements[J]. Synthetic Metals, 2009, 159(5): 424-429.
[68] RYU H J, CHA S I, HONG S H. Generalized shear-lag model for load transfer in SiC/Al metal-matrix composites[J]. Journal of Materials Research, 2003, 18(12): 2851-2858.
[1] 刘培生, 夏凤金, 程伟. 多孔材料性能模型研究2:实验验证[J]. 材料工程, 2019, 47(7): 35-49.
[2] 杨旭东, 安涛, 邹田春, 巩天琛. 湿热环境对碳纤维增强树脂基复合材料力学性能的影响及其损伤机理[J]. 材料工程, 2019, 47(7): 84-91.
[3] 徐斌, 陈程华, 张彩霞, 鲁聪达, 倪忠进. 热分解法制备Cu空心微球及其光热转换性能[J]. 材料工程, 2019, 47(7): 57-63.
[4] 王聃, 陶德华, 黄秀玲, 华子恺. 聚甲基丙稀酸羟乙酯甘油凝胶仿软骨材料的制备与性能[J]. 材料工程, 2019, 47(7): 71-75.
[5] 李立珺, 苗瑞霞, 张霞. 氧化锡纳米线的制备及其乙醇气体敏感性能[J]. 材料工程, 2019, 47(6): 82-87.
[6] 刘培生, 崔光, 程伟. 多孔材料性能模型研究1:数理关系[J]. 材料工程, 2019, 47(6): 42-62.
[7] 马明亮, 杨玉莹, 吕平, 贾丽, 贾新城, 陈柳, 孔令运, 池丽凤. 磁性核壳Fe3O4/P (GMA-DVB)-SH-Au复合催化剂的制备及催化性能[J]. 材料工程, 2019, 47(6): 70-76.
[8] 冀光普, 何秀芳, 廖海峰, 戴乐阳, 孙迪, 蔡谷昌. 等离子体辅助球磨制备表面修饰片状纳米Cu粉及摩擦学性能[J]. 材料工程, 2019, 47(6): 114-120.
[9] 刘文祎, 徐聪, 刘茂文, 肖文龙, 马朝利. 稀土元素Gd对Al-Si-Mg铸造合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(6): 129-135.
[10] 王飞云, 金建军, 江志华, 王晓震, 胡春文. 热处理温度对新型马氏体时效不锈钢微观组织和性能的影响[J]. 材料工程, 2019, 47(6): 152-160.
[11] 韩梅, 谢洪吉, 李嘉荣, 董建民, 岳晓岱, 喻健, 杨亮. 再结晶对DD6单晶高温合金轴向高周疲劳性能的影响[J]. 材料工程, 2019, 47(6): 161-168.
[12] 陈海龙, 杨学锋, 王守仁, 鹿重阳, 吴元博. 改性酚醛树脂陶瓷摩擦材料的摩擦磨损性能[J]. 材料工程, 2019, 47(6): 108-113.
[13] 闫钊鸣, 张治民, 杜玥, 张冠世, 任璐英. 均匀化处理对Mg-13Gd-3.5Y-2Zn-0.5Zr镁合金组织和力学性能的影响[J]. 材料工程, 2019, 47(5): 93-99.
[14] 张志斌, 尉小凤, 王海涛, 史雪婷, 冯利邦. 金属基超疏水表面的制备及性能研究进展[J]. 材料工程, 2019, 47(5): 26-33.
[15] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
Full text



版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持