Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (4): 41-50    DOI: 10.11868/j.issn.1001-4381.2016.000203
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
稀土对AZ91镁合金干/湿循环腐蚀产物及阻抗行为的影响
赵曦1,2, 贾瑞灵1,2, 周伟光1, 郭锋1,2
1. 内蒙古工业大学 材料科学与工程学院, 呼和浩特 010051;
2. 内蒙古自治区薄膜与涂层重点实验室, 呼和浩特 010051
Effect of Rare Earth on Corrosion Products and Impedance Behavior of AZ91 Magnesium Alloy Under Dry-wet Cycles
ZHAO Xi1,2, JIA Rui-ling1,2, ZHOU Wei-guang1, GUO Feng1,2
1. School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China;
2. Key Laboratory for Thin Film and Coatings of Inner Mongolia Autonomous Region, Hohhot 010051, China
全文: PDF(9428 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用扫描电镜(SEM)、X射线衍射(XRD)、能谱分析(EDS)研究添加(La,Ce)混合稀土前后AZ91镁合金在融雪剂溶液中经历干/湿交替循环腐蚀后腐蚀产物的组成和结构。结果表明:未添加(La,Ce)混合稀土的AZ91镁合金的腐蚀产物主要由Mg(OH)2,MgO,CaCO3及Mg6Al2CO3(OH)16·4H2O组成;而添加混合稀土的AZ91镁合金表面生成了(La,Ce)AlO3等含稀土元素的腐蚀产物,同时腐蚀产物出现致密层。不同周期干/湿交替循环腐蚀的电化学阻抗谱(EIS)测试结果表明,添加(La,Ce)混合稀土的镁合金在相同腐蚀周期的阻抗谱幅值均高于AZ91镁合金的阻抗谱幅值,稀土的添加有助于降低阻抗谱的弥散效应,表明(La,Ce)混合稀土可以提高AZ91镁合金在干/湿交替腐蚀环境中的耐蚀性和腐蚀产物膜的稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵曦
贾瑞灵
周伟光
郭锋
关键词 AZ91镁合金稀土腐蚀干/湿交替电化学阻抗    
Abstract:The effect of mischmetal of lanthanum and cerium on the composition and structure of the corrosion products on the surface of AZ91 Mg alloy in deicing salt solution under dry-wet cycles was investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). The results show that the corrosion products of AZ91 Mg alloy without mischmetal addition (La,Ce) are mainly composed of Mg(OH)2, MgO, CaCO3 and Mg6Al2CO3(OH)16·4H2O; and (La,Ce)AlO3 can be found in the products of AZ91 with mischmetal addition, meanwhile dense layer occurs in the corrosion products. Electrochemical impedance spectroscopy (EIS) measurements show that the charge transfer resistance of AZ91 alloy with mischmetal addition tested in the same dry-wet cycles is much higher than that of AZ91 alloy, the addition of mischmetal helps to reduce the dispersing effect of impedance spectroscopy, indicating that the corrosion resistance of AZ91 Mg alloy and the stability of corrosion product films can be improved by mischmetal of La and Ce.
Key wordsAZ91 Mg alloy    rare earth    corrosion    dry-wet cycle    electrochemical impedance spectroscopy(EIS)
收稿日期: 2016-02-26      出版日期: 2017-04-17
中图分类号:  TG172.5  
通讯作者: 贾瑞灵(1971-),女,博士,教授,研究方向:镁合金的腐蚀与防护,联系地址:内蒙古自治区呼和浩特市新城区爱民街49号内蒙古工业大学材料学院(010051),E-mail:jrl014014@163.com     E-mail: jrl014014@163.com
引用本文:   
赵曦, 贾瑞灵, 周伟光, 郭锋. 稀土对AZ91镁合金干/湿循环腐蚀产物及阻抗行为的影响[J]. 材料工程, 2017, 45(4): 41-50.
ZHAO Xi, JIA Rui-ling, ZHOU Wei-guang, GUO Feng. Effect of Rare Earth on Corrosion Products and Impedance Behavior of AZ91 Magnesium Alloy Under Dry-wet Cycles. Journal of Materials Engineering, 2017, 45(4): 41-50.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000203      或      http://jme.biam.ac.cn/CN/Y2017/V45/I4/41
[1] 孟树昆. 中国镁工业进展[M]. 北京:冶金工业出版社,2012:261-266. MENG S K. The Progress in Magnesium Industry of China [M]. Beijing: Metallurgical Industry Press, 2012:261-266.
[2] HUANG Y, GAN W, KAINER K, et al. Role of multi-microalloying by rare earth elements in ductilization of magnesium alloys [J]. Journal of Magnesium and Alloys, 2014, 2(1):1-7.
[3] ZHU S, GIBSON M, EASTONA M, et al. The relationship between microstructure and creep resistance in die-cast magnesium-rare earth alloys[J]. Scripta Materialia, 2010, 63(7):698-703.
[4] 张代东,张虎,于学花,等. 稀土铈对AZ61A镁合金组织和力学性能的影响[J].材料热处理, 2011, 36(12):49-54. ZHANG D D, ZHANG H, YU X H, et al. Effect of Ce on microstructure and mechanical properties of AZ61A magnesium alloy [J]. Heat Treatment of Metals, 2011, 36(12):49-54.
[5] GAVRAS S, EASTON M A, GIBSON M A, et al. Microstructure and property evaluation of high-pressure die-cast Mg-La-rare earth (Nd, Y or Gd) alloys[J]. Journal of Alloys and Compounds, 2014, 597: 21-29.
[6] WILLBOLD E, GU X, ALBERT D, et al. Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium [J]. Acta Biomaterialia, 2015, 11:554-562.
[7] MERT F, BLAWERT C, KAINER K, et al. Influence of cerium additions on the corrosion behaviour of high pressure die cast AM50 alloy [J]. Corrosion Science, 2012, 65:145-151.
[8] LIU W, CAO F, CHEN A, et al. Corrosion behaviour of AM60 magnesium alloys containing Ce or La under thin electrolyte layers. Part 1: microstructural characterization and electrochemical behavior [J]. Corrosion Science, 2010, 52(2): 627-638.
[9] 王娜,白朴存,侯小虎,等. Nd 对AZ91镁合金显微组织和耐腐蚀性能的影响[J].材料研究学报, 2011, 25(2):214-218. WANG N, BAI P C, HOU X H, et al. Effect of Nd addition on microstructure and corrosion resistance of AZ91 magnesium alloy [J]. Chinese Journal of Materials Research, 2011, 25(2):214-218.
[10] PINTO R, FERREIRA M G S, CARMEZIM M J, et al. The corrosion behaviour of rare-earth containing magnesium alloys in borate buffer solution [J]. Electrochimica Acta, 2011, 56(3):1535-1545.
[11] GUSIEVA K, DAVIES C, SCULLY J, et al. Corrosion of magnesium alloys: the role of alloying [J]. International Materials Reviews, 2015, 60(3):169-194.
[12] 蒋晓军,陈昌国,刘渝萍,等. 稀土强化镁合金耐蚀性能的研究进展[J].腐蚀与防护, 2012, 33(1):46-50. JIANG X J, CHEN C G, LIU Y P, et al. Research progress of corrosion resistance of magnesium alloys strengthened by rare-earth [J]. Corrosion & Protection, 2012, 33(1):46-50.
[13] 张金玲,何勇,李涛,等. 稀土元素Gd对AZ91镁合金摩擦磨损及腐蚀性能的影响[J].铸造技术,2014,35(7):1498-1501. ZHANG J L, HE Y, LI T, et al. Influence of rare earth Gd on wear and corrosion behavior of magnesium alloy AZ91[J].Foundry Technology, 2014, 35(7):1498-1501.
[14] NORDLIEN J H, NISANCIOGLU K, ONO S, et al. Morphology and structure of water-formed oxides on ternary MgAl alloys [J]. Journal of the Electrochemical Society, 1997, 144(2): 461-466.
[15] LIU M, SCHMUTZ P, UGGOWIZER P, et al. The influence of yttrium (Y) on the corrosion of Mg-Y binary alloys [J]. Corrosion Science, 2010, 52(11):3687-3701.
[16] CHEN X B, CAIN T, SCULLY J R, et al. Technical note: experimental survey of corrosion potentials for rare earth metals Ce, Er, Gd, La, and Nd as a function of pH and chloride concentration [J]. Corrosion, 2014,70(4):323-328.
[17] 张明,贾瑞灵,张贵龙,等. 含钇 AZ91 镁合金在连续浸泡与干湿交替环境中的腐蚀行为[J].中国有色金属学报, 2015, 25(12):3309-3318. ZHANG M, JIA R L, ZHANG G L, et al. Corrosion behavior of AZ91 magnesium alloys with yttrium under immersion and dry-wet cyclic environments [J]. The Chinese Journal of Nonferrous Metals, 2015, 25(12):3309-3318.
[18] 周伟光. La、Ce混合稀土对AZ91镁合金在干/湿交替环境中腐蚀行为的作用[D]. 呼和浩特:内蒙古工业大学, 2013. ZHOU W G. Effect of mischmetal of La and Ce on the corrosion behavior of AZ91 magnesium alloys in wet-dry circles [D]. Hohhot: Inner Mongolia University of Technology, 2013.
[19] WANG Y, XIA M, FAN Z, et al. The effect of Al8Mn5 intermetallic particles on grain size of as-cast Mg-Al-Zn AZ91D alloy [J]. Intermetallics, 2010, 18:1683-1689.
[20] PARTHIBAN G T, PALANISWAMY N,SIVAN V. Effect of manganese addition on anode characteristics of electrolytic magnesium [J]. Anti-Corrosion Methods and Materials, 2009, 56(2):79-83.
[21] ZHANG L N, JIA R L, LI D, et al. Effect of the intermetallic phases on corrosion initiation of AZ91 alloy with rare earth Y addition [J]. Journal of Materials Science & Technology, 2015, 31(5): 504-511.
[22] 曹楚南,张鉴清. 电化学阻抗谱导论[M]. 北京:科学出版社,2002:178-181. CAO C N, ZHANG J Q. An Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2002:178-181.
[23] SONG G L, ATRENS A, WU X L, et al. Corrosion behavior of AZ21, AZ501 and AZ91 in sodium chloride [J]. Corrosion Science, 1998, 40(10):1769-1791.
[24] 唐定骧. 稀土金属材料[M]. 北京:冶金工业出版社, 2011. TANG D X. Rare Earth Metal Materials [M]. Beijing: Metallurgical Industry Press, 2011.
[1] 刘文祎, 徐聪, 刘茂文, 肖文龙, 马朝利. 稀土元素Gd对Al-Si-Mg铸造合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(6): 129-135.
[2] 袁晓静, 查柏林, 陈小虎, 禹志航, 王新军. WC-10Co-4Cr涂层在不同温度酸与NaCl溶液中的耐腐蚀性能[J]. 材料工程, 2019, 47(5): 63-71.
[3] 王玉洁, 张鹏, 王选, 杜云慧, 王胜林, 张伟一, 鹿红梅. 氧气流量对LY12铝合金微弧氧化膜致密性的影响[J]. 材料工程, 2019, 47(5): 86-92.
[4] 常海, 郭雪刚, 文磊, 金莹. SiC纳米颗粒对TC4钛合金微弧氧化涂层组织结构及耐蚀性能的影响[J]. 材料工程, 2019, 47(3): 109-115.
[5] 王赟, 胡军, 王甜甜, 郑茂盛. 曼尼希碱/钨酸钠复配对N80钢缓蚀的协同作用[J]. 材料工程, 2019, 47(2): 122-128.
[6] 陈跃良, 王安东, 卞贵学, 张勇. CF8611/AC531复合材料性能及与7B04铝合金电偶腐蚀的电化学研究[J]. 材料工程, 2019, 47(1): 97-105.
[7] 马慧媛, 刘慧丛, 石文静, 施丽铭, 李卫平, 朱立群. 应力载荷作用下5A06铝合金薄板材料在盐水中腐蚀行为[J]. 材料工程, 2018, 46(9): 152-159.
[8] 万闪, 姜丹, 蔡光义, 廖圣智, 董泽华. 铝合金超疏水转化膜的制备与性能[J]. 材料工程, 2018, 46(9): 144-151.
[9] 张莹, 高博, 王磊, 宋秀. 一种新型钴基高温合金在900℃熔融NaCl中的热腐蚀行为[J]. 材料工程, 2018, 46(8): 134-139.
[10] 邓仲华, 刘其斌, 徐鹏, 姚志浩. 方形光斑激光冲击强化金属表面的耐腐蚀性能及机理[J]. 材料工程, 2018, 46(8): 140-147.
[11] 王匀, 陈英箭, 许桢英, 唐书浩. 基体表面粗糙度对热丝TIG堆焊Inconel625组织和耐腐蚀性能的影响[J]. 材料工程, 2018, 46(7): 94-99.
[12] 刘军, 张金玲, 渠治波, 于彦冲, 许并社, 王社斌. 稀土Gd对AZ31镁合金耐蚀性能的影响[J]. 材料工程, 2018, 46(6): 73-79.
[13] 李晓龙, 张杰, 张鑫, 汪江伟, 徐会会, 段继周, 侯保荣. 海洋污损生物的附着对Q235碳钢表面阴极保护钙质沉积层形成的影响[J]. 材料工程, 2018, 46(6): 88-94.
[14] 李晶, 赵世才, 杜锋, 范凤玉, 潘理达, 于化东. 激光构筑槽棱与网格状结构超疏水耐腐蚀表面研究[J]. 材料工程, 2018, 46(5): 86-91.
[15] 罗晓民, 魏梦媛, 曹敏. 耐腐蚀超疏水铜网的制备及其在油水分离中的应用[J]. 材料工程, 2018, 46(5): 92-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn