Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (5): 112-117    DOI: 10.11868/j.issn.1001-4381.2015.000699
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
P92钢蠕变-疲劳交互作用下的裂纹扩展行为
荆洪阳1,2, 唐梦茹1,2, 赵雷1,2, 徐连勇1,2
1. 天津大学 材料科学与工程学院, 天津 300072;
2. 天津市现代连接技术重点实验室, 天津 300072
Crack Growth Behaviour of P92 Steel Under Creep-fatigue Interaction Conditions
JING Hong-yang1,2, TANG Meng-ru1,2, ZHAO Lei1,2, XU Lian-yong1,2
1. School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China;
2. Tianjin Key Laboratory of Advanced Joining Technology, Tianjin 300072, China
全文: PDF(2907 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 在630℃下,对P92钢进行应力控制下的蠕变-疲劳交互作用实验,研究P92钢高温蠕变-疲劳交互作用下的裂纹扩展行为,并结合断口形貌分析蠕变-疲劳裂纹扩展的机理以及a-N曲线的转折点含义。结果表明:P92钢在蠕变-疲劳交互作用下的断裂属于蠕变韧性断裂,应该用(Ctavg作为裂纹扩展的断裂参量;P92钢在蠕变-疲劳交互条件下,试样的断口主要表现为蠕变孔洞以及微裂纹。此外,发现a-lg(Ni/Nf)曲线以及(da-dN)-N曲线中的拐点,分别对应蠕变-疲劳裂纹萌生区向扩展区转变周次以及扩展区向瞬断区转变的周次。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
荆洪阳
唐梦茹
赵雷
徐连勇
关键词 P92钢蠕变-疲劳交互裂纹扩展断口分析断裂参量    
Abstract:Creep-fatigue interaction tests of P92 steel at 630℃ under stress-controlled were carried out, and the crack propagation behaviour of P92 steel was studied. The fracture mechanism of crack growth under creep-fatigue interaction and the transition points in a-N curves were analyzed based on the fracture morphology. The results show that the fracture of P92 steel under creep-fatigue interaction is creep ductile fracture and the (Ct)avg parameter is employed to demonstrate the crack growth behaviour; in addition, the fracture morphology shows that the crack growth for P92 steel under creep-fatigue interaction is mainly caused by the nucleation and growth of the creep voids and micro-cracks. Furthermore, the transition point of a-lg(Ni/Nf) curve corresponds to the turning point of initial crack growth changed into steady crack growth while the transition point of (da/dN)-N curve exhibits the turning point of steady creep crack growth changed into the accelerated crack growth.
Key wordsP92 steel    creep-fatigue interaction    crack growth    fracture morphology    fracture parameter
收稿日期: 2015-06-03      出版日期: 2017-05-17
中图分类号:  TG142.7  
通讯作者: 徐连勇(1975-),男,博士,教授,博士研究生导师,主要研究方向为焊接力学、焊接应力与变形控制及模拟计算,E-mail:xulianyong@tju.edu.cn     E-mail: xulianyong@tju.edu.cn
引用本文:   
荆洪阳, 唐梦茹, 赵雷, 徐连勇. P92钢蠕变-疲劳交互作用下的裂纹扩展行为[J]. 材料工程, 2017, 45(5): 112-117.
JING Hong-yang, TANG Meng-ru, ZHAO Lei, XU Lian-yong. Crack Growth Behaviour of P92 Steel Under Creep-fatigue Interaction Conditions. Journal of Materials Engineering, 2017, 45(5): 112-117.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.000699      或      http://jme.biam.ac.cn/CN/Y2017/V45/I5/112
[1] 赵勇桃,董俊慧,张韶慧,等. P92钢高温拉伸断口形貌的研究[J]. 材料工程,2015, 43(4):85-91. ZHAO Y T, DONG J H, ZHANG S H, et al. High-temperature tensile fracture morphology of P92 steel [J]. Journal of Materials Engineering, 2015, 43(4):85-91.
[2] 轩福贞,涂善东,王正东. 含裂纹结构时间相关的疲劳断裂理论与剩余寿命评价术[J]. 力学进展,2005, 35(3):391-400. XUAN F Z, TU S D, WANG Z D. Time dependent fatigue fracture theory and residual life assessment techniques for defective structures [J]. Advances in Mechanics, 2005, 35(3):391-400.
[3] 谭晓明, 张丹峰, 陈跃良,等. 基于疲劳裂纹萌生机理的铝合金疲劳寿命可靠性评估方法[J]. 航空材料学报, 2014, 34(2):84-89. TAN X M, ZHANG D F, CHEN Y L, et al. Probabilistic method to predict fatigue life based on crack initiating micro-mechanism of aluminum alloy [J]. Journal of Aeronautical Materials, 2014, 34(2):84-89.
[4] LIU H, BAO R, ZHANG J, et al. A creep-fatigue crack growth model containing temperature and interactive effects [J]. International Journal of Fatigue, 2014, 59(3):34-42.
[5] 饶思贤,彭辉,周煜,等. TP347H的高温蠕变-疲劳交互规律[J]. 机械工程学报,2015, 51(2):37-42. RAO S X, PENG H, ZHOU Y, et al. Research on the interactions between creep and fatigue of TP347H under high temperature [J]. Chinese Journal of Mechanical Engineering, 2015, 51(2):37-42.
[6] YANG H, BAO R, ZHANG J, et al. Crack growth behavior of a nickel-based powder metallurgy superalloy under elevated temperature [J]. International Journal of Fatigue, 2011, 33(4):632-641.
[7] 陈学东,范志超,江慧丰,等. 复杂加载条件下压力容器典型用钢疲劳蠕变寿命预测方法[J]. 机械工程学报,2009, 45(2):81-87. CHEN X D, FAN Z C, JIANG H F, et al. Creep-fatigue life prediction methods of pressure vessel typical steels under complicated loading conditions [J]. Journal of Mechanical Engineering, 2009, 45(2):81-87.
[8] ZHANG G, ZHAO Y, XUE F, et al. Study of life prediction and damage mechanism for modified 9Cr-1Mo steel under creep-fatigue interaction [J]. Journal of Pressure Vessel Technology, 2013, 135(4):14-16.
[9] KIM B, KIM H, LIM B. Creep-fatigue damage and life prediction in P92 alloy by focused ultrasound measurements [J]. Metals and Materials International, 2008, 14(4):391-395.
[10] 刘洪杰. 电站锅炉用P91钢蠕变/疲劳交互作用的试验研究[J]. 动力工程学报,2007, 27(6):990-995. LIU H J. Experimental study on creep-fatigue interaction behavior of steel P91 for power plan boilers [J]. Journal of Power Engineering, 2007, 27(6):990-995.
[11] 薛红军,吕国志. 基于寿命-时间分数法计算蠕变疲劳的失效概率[J]. 机械强度,2002, 24(1):116-119. XUE H J, LV G Z. Estimation of failure probability for creep-fatigue failure based on the life-time method [J]. Journal of the Mechanical Strength, 2002, 24(1):116-119.
[12] FOURNIER B, SAUZAY M, CAēS C, et al. Creep-fatigue-oxidation interactions in a 9Cr-1Mo martensitic steel. Part I: Effect of tensile holding period on fatigue life time [J]. International Journal of Fatigue, 2008, 30(4):649-662.
[13] NARASIMHACHARY S B, SAXENA A. Crack growth behavior of 9Cr-1Mo (P91) steel under creep-fatigue conditions [J]. International Journal of Fatigue, 2013, 56(11):106-113.
[14] 赵雷. 拘束效应对高温下含缺陷P92管道寿命的影响研究[D]. 天津:天津大学,2012.
[15] CHEN E Y, SSUER S, MESHII M, et al. Fatigue microcrack distributions and the reliability of a nickel base super alloy [J]. International Journal Fatigue, 1997, 19(93):75-82.
[16] 王璞,董建新,张麦仓,等. GH864合金蠕变/疲劳裂纹扩展速率及a-N曲线分析[J]. 稀有金属材料与工程,2011, 40(4):630-634. WANG P, DONG J X, ZHANG M C, et al. Analysis of fatigue/creep crack propagations rated and a-N curves of GH864 alloy [J]. Rare Metal Materials and Engineering, 2011, 40(4):630-634.
[1] 钟蛟, 彭志方, 陈方玉, 彭芳芳, 刘省, 石振斌. P92钢奥氏体化后的冷却方式对650℃时效组织及硬度稳定性的影响[J]. 材料工程, 2019, 47(1): 119-124.
[2] 赵景云, Bamber BLACKMAN, 颜悦, 张旋, 张晓雯. YB-DM-10航空定向有机玻璃疲劳裂纹扩展性能[J]. 材料工程, 2018, 46(8): 156-162.
[3] 申颜团, 彭金方, 徐志彪, 刘建华, 蔡振兵, 朱旻昊. 18CrNiMo7-6合金钢的弯曲微动疲劳特性[J]. 材料工程, 2017, 45(7): 103-110.
[4] 张玉波, 郭荣鑫, 夏海廷, 颜峰, 林志伟. WCp含量对粉末冶金Cu/WCp复合材料疲劳裂纹扩展行为的影响[J]. 材料工程, 2017, 45(1): 85-92.
[5] 李永德, 张莉莉, 张冲, 贺莹莹. SUJ2轴承钢超长寿命疲劳行为研究[J]. 材料工程, 2016, 44(8): 85-92.
[6] 左平, 魏大盛, 王延荣. FGH95粉末高温合金裂纹闭合效应及裂纹扩展特性研究[J]. 材料工程, 2015, 43(8): 56-61.
[7] 许天旱, 王荣, 冯耀荣, 雒设计, 王党会, 杨宝. 应力比对K55套管钻井钢疲劳裂纹扩展性能的影响[J]. 材料工程, 2015, 43(6): 79-84.
[8] 赵勇桃, 董俊慧, 张韶慧, 刘宗昌, 李文学. P92钢高温拉伸断口形貌的研究[J]. 材料工程, 2015, 43(4): 85-91.
[9] 杨冬野, 曹福洋, 许文勇, 左欣, 李周, 张国庆, 孙剑飞. 喷射成形GH738合金的疲劳裂纹扩展行为[J]. 材料工程, 2014, 0(7): 55-59.
[10] 薛红前, 姜祎君, 封硕. 镍基合金超声疲劳裂纹扩展寿命预测研究[J]. 材料工程, 2014, 0(3): 7-13,20.
[11] 金宝, 邸新杰, 张建军, 李伟. 疲劳裂纹扩展的金属磁记忆信号特征[J]. 材料工程, 2014, 0(11): 102-106.
[12] 沙桂英, 韩玉, 刘腾, 李朝华, 王杰. 应力幅对退火态Mg-3Al-2Sc合金疲劳行为的影响[J]. 材料工程, 2012, 0(12): 24-28.
[13] 严益民, 胡正飞, 林富生, 赵双群. 汽轮机转子30Cr1Mo1V钢长期服役状态下的高温疲劳行为[J]. 材料工程, 2012, 0(11): 38-41,96.
[14] 刘劲松, 王祺, 肖寒, 张士宏. AZ31镁合金型材温热弯曲实验研究[J]. 材料工程, 2011, 0(3): 20-23.
[15] 宫玉辉, 刘铭, 张坤, 黄敏, 伊琳娜, 戴圣龙. 不同腐蚀环境对7475-T7351铝合金疲劳性能及裂纹扩展速率的影响[J]. 材料工程, 2010, 0(9): 71-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn