Please wait a minute...
 
2222材料工程  2017, Vol. 45 Issue (5): 38-45    DOI: 10.11868/j.issn.1001-4381.2015.000439
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
O2/CO2共存环境下缓蚀剂抑制碳钢腐蚀的机理研究
王贝, 许立宁(), 李东阳, 路民旭
北京科技大学 新材料技术研究院, 北京 100083
Corrosion Inhibition Mechanism of Carbon Steel in O2/CO2 Coexisting Environment
Bei WANG, Li-ning XU(), Dong-yang LI, Min-xu LU
Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(4200 KB)   HTML ( 7 )  
输出: BibTeX | EndNote (RIS)      
摘要 

利用旋转圆盘电极(RDE)研究O2/CO2共存环境下,碳钢管线在不同浓度缓蚀剂中的腐蚀电化学行为。通过与CO2环境中进行对比,研究得到O2对缓蚀剂抑制碳钢CO2腐蚀的影响。采用极化曲线测试不同浓度缓蚀剂下的缓蚀效率及阴、阳极行为,利用交流阻抗技术(EIS)监测缓蚀剂的吸附行为及腐蚀过程,并通过EIS拟合出的数据计算并绘制吸附等温线,利用扫描电镜观察含氧条件下的腐蚀形貌,利用XRD分析腐蚀产物膜的成分。结果表明:O2导致缓蚀剂分子吸附能力减弱,在碳钢表面的吸附量减少,吸附膜覆盖度变小,缓蚀效率明显降低。同时,在有O2环境下,腐蚀产物主要为疏松多孔的Fe2O3和FeO(OH)。由于含氧条件下腐蚀速率增大,腐蚀产物膜生成速率加快,导致缓蚀剂吸附能力进一步减弱,缓蚀剂有效作用时间变短。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王贝
许立宁
李东阳
路民旭
关键词 碳钢O2/CO2腐蚀缓蚀剂旋转圆盘电极吸附等温线腐蚀电化学    
Abstract

The electrochemical behavior of carbon steel pipeline in simulated solutions containing different concentrations of inhibitor saturated with O2/CO2 was studied by rotating disk electrode (RDE). After comparison with the results tested in CO2 environment, the effect of O2 on the inhibition performance of inhibitor A on the carbon steel was obtained.Potentiodynamic polarization was used to test the inhibition efficiency of inhibitor A. The EIS was used to study the adsorption behavior of the inhibitor and the corrosion process. The data calculated from the EIS fitting were used to study the adsorption behavior of the inhibitor. The morphology and the compositions of the corrosion product were observed by using SEM and XRD respectively. The results indicate that oxygen weakens the adsorption capacity of the inhibitor, which results in less adsorption film coverage ratio of the inhibitor on the steel surface and decreases corrosion inhibition efficiency. The corrosion products are loose and porous Fe2O3 and FeO(OH) in the environment of O2 and CO2 coexisting. The effective acting time of the inhibitor is shortened owing to the increasing corrosion rate and fast growth of the corrosion products in O2/CO2 environment, which results in more weakened adsorption capacity of the inhibitor.

Key wordscarbon steel    O2/CO2 corrosion    inhibitor    rotating disk electrode    adsorption isotherm curve    corrosion electrochemistry
收稿日期: 2015-04-20      出版日期: 2017-05-17
中图分类号:  TG174  
基金资助:国家科技重大专项资助项目(2011ZX05056)
通讯作者: 许立宁     E-mail: xulining@ustb.edu.cn
作者简介: 许立宁(1976-), 男, 副教授, 博士, 研究方向为缓蚀剂, CO2腐蚀及含Cr低合金钢的开发等, 联系地址:北京市海淀区学院路30号北京科技大学腐蚀楼208室(100083), E-mail:xulining@ustb.edu.cn
引用本文:   
王贝, 许立宁, 李东阳, 路民旭. O2/CO2共存环境下缓蚀剂抑制碳钢腐蚀的机理研究[J]. 材料工程, 2017, 45(5): 38-45.
Bei WANG, Li-ning XU, Dong-yang LI, Min-xu LU. Corrosion Inhibition Mechanism of Carbon Steel in O2/CO2 Coexisting Environment. Journal of Materials Engineering, 2017, 45(5): 38-45.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.000439      或      http://jme.biam.ac.cn/CN/Y2017/V45/I5/38
Fig.1  缓蚀剂A主要成分
C Si Mn P Mo Ti Fe
0.06 0.21 1.61 0.01 0.19 0.012 Bal
Table 1  X70钢的化学成分(质量分数/%)
Ca2+ Mg2+ Na+ K+ Cl- SO42- CO32- NO3-
511.6 49.2 117.3 194.9 1631.9 115.2 302.1 463.1
Table 2  某气田采出液模拟溶液离子含量(mg·L-1)
Fig.2  不同缓蚀剂浓度下的极化曲线    (a)CO2环境;(b)O2/CO2环境
Concentration/10-5 icorr/(μA·cm-2) η/%
CO2 O2/CO2 CO2 O2/CO2
0 204.0 402.0
1 166.0 277.0 18.6 31.1
2 69.1 246.0 66.2 38.7
3 45.1 136.0 77.9 66.1
6 42.5 86.9 79.2 78.4
8 3.41 79.3 98.3 80.3
Table 3  纯CO2及O2/CO2环境下自腐蚀电流密度和缓蚀效率
Fig.3  不同缓蚀剂浓度下的EIS结果    (a)CO2环境;(b)O2/CO2环境
Concentration/
10-5
Rs/
(Ω·cm2)
CPEf Rf/
(Ω·cm2)
CPEdl Rct/
(Ω·cm2)
Cdl/
(10-5F·cm-2)
Y1/(10-5Ω-1·cm-2sn) n1 Y2/(10-5Ω-1·cm-2sn) n2
0 25.94 35.86 0.8789 323.5 26.65
1 22.66 9.107 0.6809 926.1 2.858
2 26.53 0.2146 0.9963 44.79 10.72 0.6859 884.0 3.643
3 18.48 0.2527 0.9761 178.1 3.623 0.7677 1030 1.339
6 30.39 0.9670 0.8251 209.3 3.505 0.7782 974.5 1.338
8 59.28 0.8689 1.000 604.1 1.834 0.7902 3544 0.8876
Table 4  CO2环境下EIS结果拟合所得参数值
Concentration/
10-5
Rs/
(Ω·cm2)
CPEf Rf/
(Ω·cm2)
CPEdl Rct/
(Ω·cm2)
Cdl/
(10-5F·cm-2)
Y1/(10-5Ω-1·cm-2sn) n1 Y2/(10-5Ω-1·cm-2sn) n2
0 18.13 33.62 0.9111 293.5 26.82
1 17.39 43.42 0.8984 294.9 26.38
2 17.10 45.77 0.7712 272.2 24.67
3 14.24 3.838 0.6391 50.53 23.10 0.7139 435.7 9.204
6 10.37 1.481 0.7241 60.31 20.10 0.7402 470.8 8.786
8 8.396 3.636 0.6135 89.19 10.30 0.7778 496.1 4.404
Table 5  O2/CO2环境下EIS结果拟合所得参数值
Fig.4  拟合EIS结果的等效电路图    (a)较低浓度缓蚀剂;(b)较高浓度缓蚀剂
Fig.5  缓蚀剂的吸附等温曲线
Fig.6  缓蚀剂分子吸附过程    (a), (b) CO2环境;(c), (d) O2/CO2环境
Fig.7  不同时间下的EIS结果    (a)CO2环境;(b)O2/CO2环境
Fig.8  O2/CO2环境下腐蚀产物膜XRD谱
Fig.9  O2/CO2环境下腐蚀产物膜微观形貌图    (a)截面形貌;(b)外层膜;(c)内层膜
1 WANG S. Effect of oxygen on CO2 corrosion of mild steel[D]. Ohio: Ohio University, 2009.
2 AL-SHAMARI A R, KUMAR G S, GUPTA A, et al. Choking of oxygen scavenger injection quills[C]//Corrosion 2014. Texas: NACE International, 2014:3837.
3 WANG H , WYLDE J J . Corrosion inhibitor development for a slightly sour environment with an oxygen intrusion issue[J]. Journal of Materials Science and Engineering, 2011, 5 (1): 41- 55.
4 MARTIN R L. Corrosion consequences of oxygen entry into oilfield brines[C]//Corrosion 2002. Houston: NACE International, 2002: 02270.
5 NOR R R, YOON-SEAK C, DAVID Y.Impact of oxygen ingress in CO2 corrosion of mild steel[C]//Corrosion 2014. Texas: NACE International, 2014:4299.
6 LERBSCHER J, WAMBURI W, BOJES J. Galvanic probes: a versatile Monitoring technique to detect oxygen ingress PH excursions and other events in laboratory studies[C]//Corrosion 2012. Utah: NACE International, 2012:1198.
7 李天成. 榆济天然气管道内腐蚀原因[J]. 腐蚀与防护, 2014, 35 (3): 282- 285.
7 LI T C . Internal corrosion causes of Yu-Ji natural gas transmission pipeline[J]. Corrosion and Protection, 2014, 35 (3): 282- 285.
8 GULBRANDSEN E, KVAREKVAL J, MILAND H. Effect of oxygen contamination on the inhibition of CO2 corrosion[C]//Corrosion 2001. Houston: NACE International, 2001: 01054.
9 张天胜, 张浩, 高红. 缓蚀剂[M]. 北京: 化学工业出版社, 2008.
9 ZHANG T S , ZHANG H , GAO H . Inhibitor[M]. Beijing: Chemical Industry Press, 2008.
10 王佳, 曹楚南, 陈家坚, 等. 缓蚀剂阳极脱附现象的研究-缓蚀剂阳极脱附现象[J]. 中国腐蚀与防护学报, 1995, 15 (4): 241- 245.
10 WANG J , CAO C N , CHEN J J , et al. Anodic desorption of inhibitors—The phenomenon of anodic desorption of inhibitors[J]. Journal of Chinese Society for Corrosion and Protection, 1995, 15 (4): 241- 245.
11 GALVAN-MARTINEZ R , OROZCO-CRUZ R , TORRES-SANCHEZ R , et al. Corrosion study of the X52 steel immersed in seawater with a corrosion inhibitor using a rotating cylinder electrode[J]. Materials and Corrosion, 2010, 61 (10): 872- 876.
doi: 10.1002/maco.v61:10
12 曹楚南. 腐蚀电化学原理[M]. 北京: 化学工业出版社, 2008: 208.
12 CAO C N . Electrochemical Corrosion Theory[M]. Beijing: Chemistry Industry Press, 2008: 208.
13 KERN P , LANDOLT D . Adsorption of a bromine labeled carboxylic acid corrosion inhibitor on iron measured with EQCM, EIS and XPS[J]. Corrosion Science, 2002, 44 (8): 1809- 1824.
doi: 10.1016/S0010-938X(01)00156-1
14 何余生, 李忠, 奚红霞, 等. 气固吸附等温线的研究进展[J]. 离子交换与吸附, 2004, 20 (4): 376- 384.
14 HE Y S , LI Z , XI H X , et al. Research progress of gas-solid adsorption isotherms[J]. Ion Exchange and Adsorption, 2004, 20 (4): 376- 384.
15 近藤精一, 石川达一, 安部郁夫. 吸附科学[M]. 李国希, 译. 北京: 化学工业出版社, 2006. 135-137.
15 SEIICHI K, ISHIKAWA, IKUO A. Adsorption Science[M]. LI G X, Trans.Beijing:Chemical Industry Press, 2006.135-137.
16 SAMUELSSON J , UNDIN T , FORNSTEDT T J . Expanding the elution by characteristic point method for determination of various types of adsorption isotherms[J]. Journal of Chromatography A, 2011, 1218 (24): 3737- 3742.
doi: 10.1016/j.chroma.2011.04.035
17 CHAKRABORTY A , SUN B . An adsorption isotherm equation for multi-types adsorption with thermodynamic correctness[J]. Applied Thermal Engineering, 2014, 72 (2): 190- 199.
doi: 10.1016/j.applthermaleng.2014.04.024
18 李狄. 电化学原理[M]. 北京: 北京航空航天大学出版社, 1999: 128- 129.
18 LI D . Electro Chemical Principle[M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 1999: 128- 129.
19 李爱魁, 李国敏, 郭兴蓬. 缓蚀剂在N80钢上吸附行为研究[J]. 电化学, 2003, 9 (3): 314- 319.
19 LI A K , LI G M , GUO X P . Study on adsorption behavior of inhibitors on N80 steel[J]. Electro Chemistry, 2003, 9 (3): 314- 319.
20 李爱魁, 李国敏, 郭兴蓬. 低铬钢上缓蚀剂的缓蚀行为及其与腐蚀产物膜的协同作用[J]. 材料保护, 2003, 36 (5): 11- 13.
20 LI A K , LI G M , GUO X P . Inhibition behavior and synergistic effect of inhibitor with corrosion product scale on low Cr steel in CO2-saturated solution[J]. Materials Protection, 2003, 36 (5): 11- 13.
[1] 陈高红, 张月, 李应权, 刘建华, 于美. 缓蚀剂组合的容器负载方式对铝合金涂层耐蚀性能的影响[J]. 材料工程, 2022, 50(2): 153-163.
[2] 张桂源, 李于朋, 宫文彪, 宫明月, 崔恒. Zn对钢/铝异种金属搅拌摩擦焊接头界面组织及性能的影响[J]. 材料工程, 2020, 48(8): 149-156.
[3] 杜娟, 魏子明, 郑世辑, 陈亚军, 胡雪兰, 汪睿. 金属表面制备绿色环保防腐膜技术的研究进展[J]. 材料工程, 2020, 48(2): 22-31.
[4] 刘玉项, 朱胜, 韩冰源. 金属镁电化学腐蚀阳极析氢行为研究进展[J]. 材料工程, 2020, 48(10): 17-27.
[5] 葛梦妮, 张建峰, 曹惠杨, 王红兵. 剥离时间对二维Ti3C2吸附染料污染物性能的影响[J]. 材料工程, 2018, 46(7): 144-150.
[6] 李晓龙, 张杰, 张鑫, 汪江伟, 徐会会, 段继周, 侯保荣. 海洋污损生物的附着对Q235碳钢表面阴极保护钙质沉积层形成的影响[J]. 材料工程, 2018, 46(6): 88-94.
[7] 李文婷, 王浩伟, 余军, 董泽华, 郭兴蓬. 铈离子对高强铝合金应力腐蚀开裂的缓蚀作用[J]. 材料工程, 2017, 45(5): 20-30.
[8] 麻晗, 廖舒纶. 高碳钢奥氏体晶粒长大的预测[J]. 材料工程, 2017, 45(1): 78-84.
[9] 曹国良, 李国明, 陈珊, 常万顺, 陈学群. Cu对低合金钢耐海水腐蚀的影响[J]. 材料工程, 2011, 0(9): 62-67.
[10] 刘建华, 盛华, 李明, 李松梅, 于美. 三种有机物对LY12CZ铝合金在酸性溶液中的缓蚀行为研究[J]. 材料工程, 2011, 0(5): 41-47.
[11] 李斌, 师华, 张晓云, 汤智慧, 宇波. YTF-1飞机硬膜脱水防锈剂理化性能和使用性能研究[J]. 材料工程, 2009, 0(6): 26-29.
[12] 顾家琳, 闫睿, 久本淳, 濑文雄. 碳钢在青岛不同暴露方式下的大气腐蚀[J]. 材料工程, 2009, 0(12): 37-41.
[13] 曹国良, 李国明, 常万顺, 陈珊, 陈学群. 脱氧对碳钢耐点蚀性能的影响[J]. 材料工程, 2009, 0(11): 27-30,35.
[14] 李斌, 张晓云, 汤智慧, 左新章, 宇波. 飞机表面水基清洗剂对金属材料腐蚀及氢脆性能影响研究[J]. 材料工程, 2007, 0(6): 55-60.
[15] 柴成文, 路民旭, 李兴无, 张国安. 改性咪唑啉缓蚀剂对碳钢CO2腐蚀产物膜形貌和力学性能的影响[J]. 材料工程, 2007, 0(1): 29-33,36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn