Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (5): 64-70    DOI: 10.11868/j.issn.1001-4381.2015.000335
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
环梯形聚苯基硅倍半氧烷的硝化研究
梁嘉香, 何吉宇, 齐祉, 范海波, 杨荣杰
北京理工大学 材料学院 国家阻燃材料工程技术研究中心, 北京 100081
Nitration Study of Cyclic Ladder Polyphenylsilsesquioxane
LIANG Jia-xiang, HE Ji-yu, QI Zhi, FAN Hai-bo, YANG Rong-jie
National Engineering Technology Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
全文: PDF(2374 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 为了提高环梯形聚苯基硅倍半氧烷(Cyclic Ladder Polyphenylsilsesquioxane,CL-PPSQ)在聚合物中的相容性,使用多种硝化试剂,包括发烟硝酸、HNO3-H2SO4、KNO3-H2SO4、HNO3-KNO3、CH3COOH-KNO3、(CH3CO)2O-HNO3,在不同的条件下对其进行硝化,制备得到含硝基基团的NO2-PPSQ。使用FTIR、元素分析、GPC、TGA、1H NMR等对硝化产物进行表征。结果表明:发烟硝酸、HNO3-H2SO4、KNO3-H2SO4对CL-PPSQ的硝化能力最强,产物中硝基数目最多,但产物分子量降低,硅氧烷链段发生断裂;而HNO3-KNO3和CH3COOH-KNO3对CL-PPSQ没有硝化能力;(CH3CO)2O-HNO3硝化过程温和,硝化能力适中,制备得到分子链不断裂的硝化产物。对不同硝化试剂的硝化机理进行了分析,在发烟硝酸、HNO3-H2SO4、KNO3-H2SO4体系中,NO2+为硝化活化剂;对于(CH3CO)2O-HNO3体系,CH3COONO2为主要的硝化活化剂。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁嘉香
何吉宇
齐祉
范海波
杨荣杰
关键词 聚苯基硅倍半氧烷硝化反应硝酸硫酸乙酸酐    
Abstract:Several nitration reagents including fuming nitric acid, HNO3-H2SO4, KNO3-H2SO4, HNO3-KNO3, CH3COOH-KNO3, (CH3CO)2O-HNO3 were used to nitrate cyclic ladder polyphenylsilsesquioxane (CL-PPSQ) in different conditions in order to enhance the compatibility of the CL-PPSQ in polymers, the NO2-PPSQ was obtained. FTIR, element analysis, GPC, TGA and 1H NMR were used to characterize the structures of the nitrated products. The results show that the nitrating abilities of the fuming nitric acid, HNO3-H2SO4 and KNO3-H2SO4 are very strong. Many nitro groups can be linked with phenyl groups in CL-PPSQ, but with low molecular mass, fracture occurs in siloxane segment. However, the Mn of the product NO2-PPSQ sharply drops by 50% compared with that of CL-PPSQ, so the nitration reagents can break the cyclic structure of CL-PPSQ. The nitrating reagents of HNO3-KNO3 and CH3COOH-KNO3 have no nitration effects on CL-PPSQ. At last, NO2-CL-PPSQ was prepared using (CH3CO)2O-HNO3 because of the moderate nitration process and ability. The cyclic structure of PPSQ is remained, although the number of —NO2 group is not too much. At the same time, the nitration mechanism using different nitration reagents was analyzed. A certain amount of NO2+, which is a kind of activator owning strong nitration ability, can be found in the fuming nitric acid and H2SO4-HNO3(KNO3) systems. As to the (CH3CO)2O-HNO3 system, the main activator is CH3COONO2.
Key wordspolyphenylsilsesquioxane    nitration    nitric acid    sulfuric acid    acetic anhydride
收稿日期: 2015-03-25      出版日期: 2017-05-17
中图分类号:  O621.25+5.4  
通讯作者: 杨荣杰(1963-),男,教授,博士,主要研究耐热阻燃材料、推进剂材料,联系地址:北京市海淀区中关村南大街5号北京理工大学材料学院(100081),E-mail:yrj@bit.edu.cn     E-mail: yrj@bit.edu.cn
引用本文:   
梁嘉香, 何吉宇, 齐祉, 范海波, 杨荣杰. 环梯形聚苯基硅倍半氧烷的硝化研究[J]. 材料工程, 2017, 45(5): 64-70.
LIANG Jia-xiang, HE Ji-yu, QI Zhi, FAN Hai-bo, YANG Rong-jie. Nitration Study of Cyclic Ladder Polyphenylsilsesquioxane. Journal of Materials Engineering, 2017, 45(5): 64-70.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.000335      或      http://jme.biam.ac.cn/CN/Y2017/V45/I5/64
[1] CHANG S, MATSUMOTO T, MATSUMOTO H. Synthesis and characterization of heptacyclic laddersiloxanes and ladder polysilsesquioxane [J]. Appl Organomet Chem, 2010, 24(3): 241-246.
[2] HANDKE M, HANDKE B, KOWALEWSKA A, et al. New polysilsesquioxane materials of ladder-like structure [J]. Journal of Molecular Strucuture, 2009, 924: 254-263.
[3] ZHANG Z X, HAO J K, XIE P. A well-defined ladder polyphenylsilsesquioxane (Ph-LPSQ) synthesized via a new three-step approach: monomer self-organization-lyophilization-surface-confined polycondensation [J]. Chem Mater, 2008, 20(4): 1322-1330.
[4] ZHANG L L, TIAN G F, WANG X D, et al. Polyimide/ladder-like polysilsesquioxane hybrid films: mechanical performance, microstructure and phase separation behaviors[J]. Composites: Part B, 2014, 56(1): 808-814.
[5] KIM S G, TAMAKI C R, LAINE R M. Synthesis of amino-containing oligophenylsilsesquioxanes [J]. Polymer, 2005, 46(12): 4514-4524.
[6] 蒋云芸. 梯形聚苯基硅倍半氧烷的合成及应用研究[D]. 北京: 北京理工大学, 2012. JIANG Y Y. Synthesis and application of ladder polyphenylsilsesquioxane[D]. Beijing: Beijing Institute of Technology, 2012.
[7] 梁嘉香. 环梯形聚苯基硅倍半氧烷的合成及表征[D]. 北京: 北京理工大学, 2014. LIANG J X. Synthesis and characterization of cyclic ladder polyphenylsilsesquioxane[D]. Beijing: Beijing Institute of Technology, 2014.
[8] 范海波, 杨荣杰, 李向梅. 多面体低聚八硝基苯基硅倍半氧烷纯度分析[J]. 化学学报, 2012, 70(16): 1737-1742. FAN H B, YANG R J, LI X M. Purity analysis of polyhedral oligomeric octa(nitrophenyl)silsesquioxane [J]. Acta Chim Sinica, 2012, 70(16): 1737-1742.
[9] 范海波, 杨荣杰, 李定华. 多面体低聚八氨基苯基硅倍半氧烷合成方法改进及其表征[J]. 化学学报, 2012, 70(4): 429-435. FAN H B, YANG R J, LI D H. Synthesis improvement and characterization of polyhedral oligomeric octa(aminophenyl)silsesquioxane [J]. Acta Chim Sinica, 2012, 70(4): 429-435.
[10] TAMAKI R, TANAKA Y, ASUNCION M. Octa(aminophenyl)silsesquioxane as a nanoconstruction site [J]. J Am Chem Soc, 2001, 123: 12416-12417.
[11] 周发岐. 炸药合成化学[M]. 北京: 国防工业出版社, 1984. 230-317. ZHOU F Q. Explosive Synthesis Chemistry [M]. Beijing: National Defence Industry Press, 1984.230-317.
[12] 樊能廷. 有机合成事典[M]. 北京: 北京理工大学出版社, 1995.129-181. FAN N T. Organic Synthesis [M]. Beijing: Beijing Institute of Technology Press, 1995.129-181.
[13] 陈树森, 邱文革, 于永忠. 六苯甲酰基六氮杂异伍兹烷的硝解[J]. 兵工学报, 2000, 21(2): 116-118. CHEN S S, QIU W G, YU Y Z. Nitrolysis of hexabenzoylhexaazaisowurzitane [J]. Acta Armamentarii, 2000, 21(2): 116-118.
[14] 李玉川, 祁才, 孙成辉, 等. 2, 6, 8, 12-四硝基-2, 4, 6, 8, 10, 12-六氮杂异伍兹烷的合成及量子化学研究含能材料[J]. 含能材料,2010, 18(2): 121-127. LI Y C, QI C, SUN C H, et al. Synthesis and quantum chemical study on 2, 6, 8, 12-tetranitro-2, 4, 6, 8, 10, 12-hexaazaisowurtzitane [J]. Chinese J Energ Mater, 2010, 18(2): 121-127.
[15] 魏运洋, 金铁柱. 十二烷基苯的硝化选择性[J]. 应用化学, 1995, 12(1): 43-47. WEI Y Y, JIN T Z. Orientation of nitration on dodeeylbenzene [J]. Chinese J Appl Chem, 1995, 12(1): 43-47.
[16] 孙成辉, 方涛, 杨宗云. 硝-硫混酸硝化四乙酰基六氮杂异伍兹烷制备CL-20反应机理[J]. 含能材料, 2009, 17(2): 161-165. SUN C H, FANG T, YANG Z Y. Reaction mechanism of preparation CL-20 from tetraacetylhexaazaisowurtzitane nitrated by mixture of nitric acid and sulfuric acid [J]. Chinese J Energ Mater, 2009, 17(2): 161-165.
[1] 李萍, 秦鹏, 赵杰, 李廷举, 庞胜娇. 预涂覆碱金属硫酸盐的HR3C在含SO2气氛中的热腐蚀行为[J]. 材料工程, 2017, 45(1): 43-51.
[2] 骆晨, Sergiu P. Albu, 孙志华, 汤智慧, 陆峰, Xiaorong Zhou. 硼酸-硫酸阳极氧化2A97 Al-Cu-Li合金在热带海洋大气环境中的初期腐蚀机理[J]. 材料工程, 2016, 44(9): 8-15.
[3] 朱承飞, 洪永飞, 薛金花, 黄攀, 吉光辉. 甘氨酸-硝酸盐燃烧法制备Beta-Al2O3固体电解质研究[J]. 材料工程, 2016, 44(8): 23-28.
[4] 刘慧丛, 李峰, 张建周, 姬振江, 王萌, 朱立群. 硅溶胶对LY12CZ铝合金硼硫酸阳极氧化的影响[J]. 材料工程, 2016, 44(7): 49-53.
[5] 杨继年, 杨双萍, 王闯, 邵凯运, 江鹏飞, 周辉. 超细硫酸钡和轻质碳酸钙协同增韧聚乳酸混杂材料的制备及性能[J]. 材料工程, 2016, 44(11): 61-65.
[6] 李萍, 李安娜, 庞胜娇, 赵杰, 李廷举. Super304H抗碱金属硫酸盐的腐蚀行为[J]. 材料工程, 2015, 43(1): 54-58.
[7] 于美, 马荣豹, 刘建华, 李松梅, 王一博, 刘英智. 硝酸铈封闭对2A12铝合金己二酸-硫酸阳极氧化膜耐蚀性的影响[J]. 材料工程, 2015, 43(1): 24-29.
[8] 杜楠, 田文明, 赵晴, 孟保利. SO42-浓度对304不锈钢在NaCl 溶液中点蚀行为影响的研究[J]. 材料工程, 2012, 0(7): 64-70.
[9] 方世杰, 刘耀辉, 乔健, 张伟. SRB对AZ91镁合金在两种培养基中腐蚀行为的影响[J]. 材料工程, 2011, 0(9): 56-61,67.
[10] 张杰, 刘奉令, 李伟华, 段继周, 翟慎宝, 侯保荣. 硫酸盐还原菌对海底泥中Al-Zn-In-Mg-Ti阳极的腐蚀影响[J]. 材料工程, 2011, 0(4): 43-48.
[11] 王燕, 雷永平, 符寒光, 林健. 硫酸盐型镀液中电沉积低应力镍钴合金镀层的研究[J]. 材料工程, 2010, 0(8): 16-19.
[12] 陶菲菲, 徐正. 枝状晶体铜的电化学制备[J]. 材料工程, 2008, 0(10): 150-153.
[13] 万晔, 严川伟, 曹楚南. 微量SO2条件下硫酸铵颗粒沉积对A3钢大气腐蚀的影响[J]. 材料工程, 2003, 0(3): 11-13,20.
[14] 杨春晟, 杨军红. 硫酸亚铁铵容量法测定钛合金中高含量钒和铬[J]. 材料工程, 2002, 0(12): 11-13.
[15] 刘长明, 李玉梅. 锌合金ZZnAl4-1中Mg、Fe、Pb、Sn的光谱分析方法[J]. 材料工程, 1993, 0(11): 32-34,31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部       总访问数: 
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn