Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (6): 129-137    DOI: 10.11868/j.issn.1001-4381.2015.001083
  综述 本期目录 | 过刊浏览 | 高级检索 |
可见光响应型ZnO基纳米复合光催化材料的研究进展
赵燕茹1, 马建中1, 刘俊莉2
1 陕西科技大学 轻工科学与工程学院, 西安 710021;
2 陕西科技大学 材料科学与工程学院, 西安 710021
Research Progress on Visible-light Responding ZnO-based Nanocomposite Photocatalyst
ZHAO Yan-ru1, MA Jian-zhong1, LIU Jun-li2
1 College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China;
2 College of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
全文: PDF(13983 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 本文综述了ZnO基纳米复合光催化材料的基本结构与性能、光催化效果及其作用机理;系统概述了可见光响应型ZnO基纳米复合光催化材料在有机物污染物降解、光催化制氢和抗菌等方面的应用,并对其进一步研究提出了思路和建议。相信随着基础研究与应用实践的不断深入,ZnO基纳米复合光催化材料最终会在高效催化剂、环境净化、太阳能转换等方面得到长久发展与广泛应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵燕茹
马建中
刘俊莉
关键词 纳米氧化锌纳米复合材料可见光光催化催化机理    
Abstract:In this review, different types and properties, photocatalysis and functional mechanism of ZnO-based nanocomposite were summarized. Besides, the research advances were discussed in applications of visible-light responding ZnO-based nanocomposite in fields of degradation of organic pollutants,photocatalytic hydrogen production and antibacterial agents, and the way of thinking and suggestions for further research on ZnO-based nanocomposite photocatalyst were put forward. With the developing of basic research and application, ZnO-based nanocomposite photocatalyst will be widely used in the fields of high efficiency catalyst, environmental purification, solar energy conversion and so on.
Key wordsZnO    nanocomposite    visible photocatalytic    catalytic mechanism
收稿日期: 2015-09-01      出版日期: 2017-06-20
中图分类号:  TB33  
通讯作者: 马建中(1961-),男,教授,现从事有机/无机纳米复合材料的制备及机理研究,联系地址:陕西省西安市陕西科技大学(710021),E-mail:majz@sust.edu.cn     E-mail: majz@sust.edu.cn
引用本文:   
赵燕茹, 马建中, 刘俊莉. 可见光响应型ZnO基纳米复合光催化材料的研究进展[J]. 材料工程, 2017, 45(6): 129-137.
ZHAO Yan-ru, MA Jian-zhong, LIU Jun-li. Research Progress on Visible-light Responding ZnO-based Nanocomposite Photocatalyst. Journal of Materials Engineering, 2017, 45(6): 129-137.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.001083      或      http://jme.biam.ac.cn/CN/Y2017/V45/I6/129
[1] ZHU Y P, MA T Y, REN T Z, et al. Highly dispersed photoactive zinc oxide nanoparticles on mesoporous phosphonated titania hybrid[J]. Applied Catalysis B:Environmental, 2014, 156:44-52.
[2] KOLODZIEJCZAK-RADZIMSKA A, JESIONOWSKI T. Zinc oxide-from synthesis to application:a review[J]. Materials, 2014, 7(4):2833-2881.
[3] YIN Q Q, QIAO R, TONG G X. Preparation and photocatalytic application of ion-doped ZnO functional nanomaterials[J]. Progress in Chemistry, 2014, 26(10):1619-1632.
[4] HAN C, YANG M Q, WENG B, et al. Improving the photocatalytic activity and anti-photocorrosion of semiconductor ZnO by coupling with versatile carbon[J]. Physical Chemistry Chemical Physics, 2014, 16(32):16891-16903.
[5] MA J Z, LIU J L, BAO Y, et al. Synthesis of largescale uniform mulberry-like ZnO particles with microwave hydrothermal method and its antibacterial property[J]. Ceramics International, 2013, 39(3):2803-2810.
[6] 鲍艳,张永辉,马建牛,等.一维纳米氧化锌的制备及应用研究[J].材料工程,2015,43(2):103-112. BAO Y, ZHANG Y H, MA J Z, et al. Progress in preparation and application of one-dimensional nano zinc oxide[J]. Journal of Materials Engineering, 2015, 43(2):103-112.
[7] ZHANG H, ZONG R, ZHU Y. Photocorrosion inhibition and photoactivity enhancement for zinc oxide via hybridization with monolayer polyaniline[J]. The Journal of Physical Chemistry C, 2009, 113(11):4605-4611.
[8] VU T T, DEL R L, VALDES-SOLIS T, et al. Fabrication of wire mesh-supported ZnO photocatalysts protected against photocorrosion[J]. Applied Catalysis B:Environmental, 2013, 140:189-198.
[9] LEE J, SHIM H S, LEE M, et al. Size-controlled electron transfer and photocatalytic activity of ZnO-Au nanoparticle composites[J]. The Journal of Physical Chemistry Letters, 2011, 2(22):2840-2845.
[10] ZENG H, LIU P, CAI W, et al. Controllable Pt/ZnO porous nanocages with improved photocatalytic activity[J]. The Journal of Physical Chemistry C, 2008, 112(49):19620-19624.
[11] CHIOU J W, RAY S C, TSAI H M, et al. Correlation between electronic structures and photocatalytic activities of nanocrystalline-(Au, Ag, and Pt) particles on the surface of ZnO nanorods[J]. The Journal of Physical Chemistry C, 2011, 115(6):2650-2655.
[12] CHEN Y, ZENG D, ZHANG K, et al. Au-ZnO hybrid nanoflowers, nanomultipods and nanopyramids:one-pot reaction synthesis and photocatalytic properties[J]. Nanoscale, 2014, 6(2):874-881.
[13] ZHOU X, LIU G, YU J, et al. Surface plasmon resonance-mediated photocatalysis by noble metal-based composites under visible light[J]. Journal of Materials Chemistry, 2012, 22(40):21337-21354.
[14] FAISAL M, ISMAIL A A, IBRAHIM A A, et al. Highly efficient photocatalyst based on Ce doped ZnO nanorods:controllable synthesis and enhanced photocatalytic activity[J]. Chemical Engineering Journal, 2013, 229:225-233.
[15] ETACHERI V, ROSHAN R, KUMAR V. Mg-doped ZnO nanoparticles for efficient sunlight-driven photocatalysis[J]. ACS Applied Materials & Interfaces, 2012, 4(5):2717-2725.
[16] HUO J, FANG L, LEI Y, et al. Facile preparation of yttrium and aluminum co-doped ZnO via a sol-gel route for photocatalytic hydrogen production[J]. Journal of Materials Chemistry A, 2014, 2(29):11040-11044.
[17] LI D, HUANG J F, CAO L Y, et al. Microwave hydrothermal synthesis of Sr2+ doped ZnO crystallites with enhanced photocatalytic properties[J]. Ceramics International, 2014, 40(2):2647-2653.
[18] VELMURUGAN R, SWAMINATHAN M. An efficient nanostructured ZnO for dye sensitized degradation of reactive red 120 dye under solar light[J]. Solar Energy Materials and Solar Cells, 2011, 95(3):942-950.
[19] SAIKIA L, BHUYAN D, SAIKIA M, et al. Photocatalytic performance of ZnO nanomaterials for self sensitized degradation of malachite green dye under solar light[J]. Applied Catalysis A:General, 2015, 490:42-49.
[20] YARAHMADI A, SHARIFNIA S. Dye photosensitization of ZnO with metallophthalocyanines (Co, Ni and Cu) in photocatalytic conversion of greenhouse gases[J]. Dyes and Pigments, 2014, 107:140-145.
[21] CHEN S Z, ZHANG P Y, ZHU W P, et al. Progress in visible light responding photocatalysts[J]. Progress in Chemistry, 2004, 16(4):613-619.
[22] YU J, ZHUANG S, XU X, et al. Photogenerated electron reservoir in hetero-p-n CuO-ZnO nanocomposite device for visible-light-driven photocatalytic reduction of aqueous Cr (vi)[J]. Journal of Materials Chemistry A, 2015, 3(3):1199-1207.
[23] CHOU S, JANG J W, LEE J S, et al. Porous ZnO-ZnSe nanocomposites for visible light photocatalysis[J]. Nanoscale, 2012, 4(6):2066-2071.
[24] NG Y H, IKEDA S, MATSUMURA M, et al. A perspective on fabricating carbon-based nanomaterials by photocatalysis and their applications[J]. Energy & Environmental Science, 2012, 5(11):9307-9318.
[25] CHEN Z, ZHANG N, XU Y J. Synthesis of graphene-ZnO nanorod nanocomposites with improved photoactivity and anti-photocorrosion[J]. Cryst Eng Comm, 2013, 15(15):3022-3030.
[26] SHARMA S P, SURYANRAYANA M V S, NIGAM A K, et al. PANI/ZnO composite:catalyst for solvent-free selective oxidation of sulfides[J]. Catalysis Communications, 2009, 10(6):905-912.
[27] NOSRATI R, OLAD A, MARAMIFAR R. Degradation of ampicillin antibiotic in aqueous solution by ZnO/polyaniline nanocomposite as photocatalyst under sunlight irradiation[J]. Environmental Science and Pollution Research, 2012, 19(6):2291-2299.
[28] SUN S, WANG W, JIANG D, et al. Bi2WO6 quantum dot-intercalated ultrathin montmorillonite nanostructure and its enhanced photocatalytic performance[J]. Nano Research, 2014, 7(10):1497-1506.
[29] FATIMAH I, WANG S, WULANDARI D. ZnO/montmorillonite for photocatalytic and photochemical degradation of methylene blue[J]. Applied Clay Science, 2011, 53(4):553-560.
[30] LIU X, PAN L, LV T, et al. Microwave-assisted synthesis of ZnO-graphene composite for photocatalytic reduction of Cr(VI)[J]. Catalysis Science & Technology, 2011, 1(7):1189-1193.
[31] XU T, ZHANG L, CHENG H, et al. Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study[J]. Applied Catalysis B:Environmental, 2011, 101(3):382-387.
[32] SALEH T A, GONDAL M A, DRMOSH Q A, et al. Enhancement in photocatalytic activity for acetaldehyde removal by embedding ZnO nano particles on multiwall carbon nanotubes[J]. Chemical Engineering Journal, 2011, 166(1):407-412.
[33] SUROSHE J S, GARJIE S S. Capacitive behaviour of functionalized carbon nanotube/ZnO composites coated on a glassy carbon electrode[J]. Journal of Materials Chemistry A, 2015, 3(30):15650-15660.
[34] SOBANA N, SWAMINATHAN M. Combination effect of ZnO and activated carbon for solar assisted photocatalytic degradation of Direct Blue 53[J]. Solar Energy Materials and Solar Cells, 2007, 91(8):727-734.
[35] YANG M Q, XU Y J. Basic principles for observing the photosensitizer role of graphene in the graphene-semiconductor composite photocatalyst from a case study on graphene-ZnO[J]. The Journal of Physical Chemistry C, 2013, 117(42):21724-21734.
[36] AHMAD M, AHMED E, HONG Z L, et al. A facile one-step approach to synthesizing ZnO/graphene composites for enhanced degradation of methylene blue under visible light[J]. Applied Surface Science, 2013, 274:273-281.
[37] XU T, ZHANG L, CHENG H, et al. Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study[J]. Applied Catalysis B:Environmental, 2011, 101(3):382-387.
[38] ESKIZEYBEK V, SARI F, GULCE H, et al. Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations[J]. Applied Catalysis B:Environmental, 2012, 119:197-206.
[39] LIN X, HUANG T, HUANG F, et al. Photocatalytic activity of a Bi-based oxychloride Bi4NbO8Cl[J]. Journal of Materials Chemistry, 2007, 17(20):2145-2150.
[40] NG Y H, IKEDA S, MATSUMURA M, et al. A perspective on fabricating carbon-based nanomaterials by photocatalysis and their applications[J]. Energy & Environmental Science, 2012, 5(11):9307-9318.
[41] LU H B, LI H, LIAO L, et al. Low-temperature synthesis and photocatalytic properties of ZnO nanotubes by thermal oxidation of Zn nanowires[J]. Nanotechnology, 2008, 19(4):045605.
[42] KHANCHANDANI S, KUNDU S, PATRA A, et al. Shell thickness dependent photocatalytic properties of ZnO/CdS core-shell nanorods[J]. The Journal of Physical Chemistry C, 2012, 116(44):23653-23662.
[43] XIE Y, YING P. CdS-mesoporous ZnS core-shell particles for efficient and stable photocatalytic hydrogen evolution under visible light[J]. Energy & Environmental Science, 2014, 6(7):1895-1901.
[44] WANG Y, WANG Q, ZHAN X, et al. Visible light driven type Ⅱ heterostructures and their enhanced photocatalysis properties:a review[J]. Nanoscale, 2013, 5(18):8326-8339.
[45] MENG X Q. Influence of ZnS and MgO shell on the photoluminescence properties of ZnO core/shell nanowires[J]. The Journal of Physical Chemistry C, 2009,3(114):1467-1471.
[46] SHIPWAY A N, WILLNER I. Nanoparticles as structural and functional units in surface-confined architectures[J]. Chemical Communications, 2001,(20):2035-2045.
[47] WANG Y, WANG Q, ZHAN X, et al. Visible light driven type Ⅱ heterostructures and their enhanced photocatalysis properties:a review[J]. Nanoscale, 2013, 5(18):8326-8339.
[48] KHANCHANDANI S, KUNDU S, PATRA A, et al. Shell thickness dependent photocatalytic properties of ZnO/CdS core-shell nanorods[J]. The Journal of Physical Chemistry C, 2012, 116(44):23653-23662.
[49] BEYDOUN D, AMAL R, LOW G, et al. Role of nanoparticles in photocatalysis[J]. Journal of Nanoparticle Research, 1999, 1(4):439-458.
[50] KUNDU P, DESHPANDE P A, MADRAS G, et al. Nanoscale ZnO/CdS heterostructures with engineered interfaces for high photocatalytic activity under solar radiation[J]. Journal of Materials Chemistry, 2011, 21(12):4209-4216.
[51] QINGALU G. Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures[J]. Chemical Communications, 2009,(23):3452-3454.
[52] WU C, SHEN L, ZHANG Y C, et al. Synthesis of AgBr/ZnO nanocomposite with visible light-driven photocatalytic activity[J]. Materials Letters, 2012, 66(1):83-85.
[53] JIANG J, ZHANG X, SUN P, et al. ZnO/BiOI heterostructures:photoinduced charge-transfer property and enhanced visible-light photocatalytic activity[J]. The Journal of Physical Chemistry C, 2011, 115(42):20555-20564.
[54] LEARY R, WESTWOOD A. Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis[J]. Carbon, 2011, 49(3):741-772.
[55] GUO Y, WANG H, HE C, et al. Uniform carbon-coated ZnO nanorods:microwave-assisted preparation, cytotoxicity, and photocatalytic activity[J]. Langmuir, 2009, 25(8):4678-4684.
[56] YAN X, ZOU C, GAO X, et al. ZnO/TiO2 core-brush nanostructure:processing, microstructure and enhanced photocatalytic activity[J]. Journal of Materials Chemistry, 2012, 22(12):5629-5640.
[57] MAEDA K, DOMEN K. Photocatalytic water splitting:recent progress and future challenges[J]. The Journal of Physical Chemistry Letters, 2010, 1(18):2655-2661.
[58] WEN F Y, YANG J H, ZONG X, et al. Photocatalytic hydrogen production utilizing solar energy[J]. Progress in Chemistry, 2009, 21(11):2285-2302.
[59] YU Z B, XIE Y P, LIU G, et al. Self-assembled CdS/Au/ZnO heterostructure induced by surface polar charges for efficient photocatalytic hydrogen evolution[J]. Journal of Materials Chemistry A, 2013, 1(8):2773-2776.
[60] WANG Z, CAO S W, LOO S C J, et al. Nanoparticle heterojunctions in ZnS-ZnO hybrid nanowires for visible-light-driven photocatalytic hydrogen generation[J]. Cryst Eng Comm, 2013, 15(28):5688-5693.
[61] WANG X, LIU G, LU G Q, et al. Stable photocatalytic hydrogen evolution from water over ZnO-CdS core-shell nanorods[J]. International Journal of Hydrogen Energy, 2010, 35(15):8199-8205.
[62] LIU J L, MA J Z, BAO Y, et al. Nanoparticle morphology and film-forming behavior of polyacrylate/ZnO nanocomposite[J]. Composites Science and Technology, 2014, 98:64-71.
[63] MA J Z, HUI A P, LIU J L. Research progress on antibacterial materials of nano-ZnO[J]. Journal of Functional Materials, 2014, 45(24):24001-24007.
[64] MA J Z, HUI A P, LIU J L, et al. Controllable synthesis of highly efficient antimicrobial agent-Fe doped sea urchin-like ZnO nanoparticles[J]. Materials Letters, 2015, 158:420-423.
[65] WANG Y W, CAO A, JIANG Y, et al. Superior antibacterial activity of zinc oxide/graphene oxide composites originating from high zinc concentration localized around bacteria[J]. ACS Applied Materials & Interfaces, 2014, 6(4):2791-2798.
[66] ZIRAK M, AKHAVAN O, MORADLOU O, et al. Vertically aligned ZnO@CdS nanorod heterostructures for visible light photoinactivation of bacteria[J]. Journal of Alloys and Compounds, 2014, 590:507-513.
[1] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[2] 张从阳, 李志锐, 方东, 叶永盛, 叶喜葱, 吴海华. SiCp/AZ91D镁基纳米复合材料的室温拉伸行为及塑性变形机理[J]. 材料工程, 2020, 48(4): 108-115.
[3] 陈振, 张增志, 丛中卉, 王立宁, 吴浩平. 开孔型聚合物发泡材料的研究及应用进展[J]. 材料工程, 2020, 48(3): 1-9.
[4] 侯桂香, 谢建强, 姚少巍, 张云杰, 蓝文. 生物基没食子酸环氧树脂/纳米氧化锌抗菌涂层的制备与性能[J]. 材料工程, 2020, 48(3): 34-39.
[5] 李曦. 二维和零维纳米材料协同增强的高性能纳米复合材料[J]. 材料工程, 2019, 47(4): 47-55.
[6] 张宇, 黄峰, 马金瑞, 刘强, 孙煜. 羟基化处理对氮化硼膜耐原子氧性能的影响[J]. 材料工程, 2018, 46(7): 61-67.
[7] 左银泽, 陈亮, 朱斌, 高延敏. 纳米氧化锌负载氧化石墨烯/环氧树脂复合材料性能研究[J]. 材料工程, 2018, 46(5): 22-28.
[8] 王飞, 贾书海, 唐振华, 汪永林. 石墨烯纳米复合材料光驱动技术的研究进展[J]. 材料工程, 2018, 46(4): 12-22.
[9] 毕波, 王学宝. 纳米碳材料在聚合物阻燃中的应用研究进展[J]. 材料工程, 2017, 45(5): 135-144.
[10] 陈阁谷, 关莹, 亓宪明, 彭锋, 姚春丽, 孙润仓. 聚合物/层状硅酸盐纳米复合材料阻燃性研究进展[J]. 材料工程, 2015, 43(8): 104-112.
[11] 鲍艳, 张永辉, 马建中, 杨永强. 一维纳米氧化锌的制备及应用研究进展[J]. 材料工程, 2015, 43(2): 103-112.
[12] 张宗华, 刘刚, 张晖, 张忠, 王小群. 纳米氧化铝颗粒对高性能环氧树脂玻璃化转变温度的影响[J]. 材料工程, 2014, 0(9): 39-44.
[13] 燕绍九, 杨程, 洪起虎, 陈军洲, 刘大博, 戴圣龙. 石墨烯增强铝基纳米复合材料的研究[J]. 材料工程, 2014, 0(4): 1-6.
[14] 甘小荣, 薛方红, 黄昊, 董星龙, 汪晓允, 于洪涛, 刘艳明, 全燮. SiC/C纳米复合材料的制备与性能表征[J]. 材料工程, 2014, 0(2): 75-80,86.
[15] 贾海鹏, 苏勋家, 侯根良, 曹小平, 毕松, 刘朝辉. 石墨烯基磁性纳米复合材料的制备与微波吸收性能研究进展[J]. 材料工程, 2013, 0(5): 89-93,100.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn