Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (6): 61-66    DOI: 10.11868/j.issn.1001-4381.2015.001191
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
高温处理对几种玄武岩纤维成分和拉伸性能的影响
陈菁, 顾轶卓, 杨中甲, 李敏, 王绍凯, 张佐光
北京航空航天大学 材料科学与工程学院, 北京 100191
Effects of Elevated Temperature Treatment on Compositions and Tensile Properties of Several Kinds of Basalt Fibers
CHEN Jing, GU Yi-zhuo, YANG Zhong-jia, LI Min, WANG Shao-kai, ZHANG Zuo-guang
School of Materials Science and Engineering, Beihang University, Beijing 100191, China
全文: PDF(1515 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 选取5种国产玄武岩纤维,采用X射线荧光光谱法和纤维单丝拉伸测试等方法,研究200~800℃空气气氛和氮气气氛处理前后纤维的化学成分、物理特性和拉伸性能等变化,以揭示玄武岩纤维的耐高温性能。结果表明:空气气氛下高温处理后由于表面处理剂的去除,玄武岩纤维表面更加光滑,直径略微变小,同时质量减少;SiO2,Al2O3质量分数减小,而FeO+Fe2O3,CaO,MgO质量分数都增大,其中FeO+Fe2O3的质量分数增加最多,增幅最大达到21%。200℃处理后玄武岩纤维单丝拉伸强度有一定降低,强度保留率最大为98.3%,400℃处理后强度明显下降,强度保留率最高达到64.6%,800℃处理后强度保留率均不足20%。此外,纤维断裂伸长率随温度的升高而减小,弹性模量增大。与空气气氛相比,氮气气氛下纤维强度保留率更高,拉伸性能更稳定。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈菁
顾轶卓
杨中甲
李敏
王绍凯
张佐光
关键词 玄武岩纤维玻璃纤维高温处理化学成分单丝拉伸性能    
Abstract:Five kinds of domestic basalt fibers were studied for the changes of chemical compositions, physical properties and tensile properties of these fibers before and after 200-800℃ treatment in air atmosphere and in nitrogen atmosphere. These works were done mainly by means of X-ray fluorescence spectrometry and fiber monofilament tensile testing methods in order to understand the elevated temperature resistance of basalt fiber. The experimental results show that the surface of basalt fibers becomes smoother with slightly smaller in diameter and mass reduction at the same time, due to the removal of fiber surface treatment agent after elevated temperature treatment in air atmosphere. Mass fractions of SiO2 and Al2O3 decrease while mass fractions of FeO+Fe2O3, CaO and MgO increase, among which the mass fraction of FeO+Fe2O3 increase the most with the maximum increase of 21%. The monofilament tensile strength of basalt fiber is reduced after 200℃ treatment and the maximum strength retention percentage is 98.3%. The monofilament tensile strength reduces evidently after 400℃ treatment and the maximum strength retention percentage is 64.6%. Moreover, the strength retention percentages of five kinds of basalt fibers are all less than 20% after 800℃ treatment. In addition, the fiber elongation at break decreases with the increase of treating temperature and the elastic modulus increases. Compared with that in air atmosphere, strength retention rate of basalt fiber is higher and tensile properties are more stable in nitrogen atmosphere.
Key wordsbasalt fiber    glass fiber    high temperature treatment    chemical composition    monofilament tensile property
收稿日期: 2015-09-25      出版日期: 2017-06-20
中图分类号:  TB332  
通讯作者: 顾轶卓(1979-),男,副教授,博士,主要从事树脂基复合材料方面的研究工作,联系地址:北京市海淀区学院路37号北京航空航天大学材料科学与工程学院(100191),E-mail:benniegu@buaa.edu.cn     E-mail: benniegu@buaa.edu.cn
引用本文:   
陈菁, 顾轶卓, 杨中甲, 李敏, 王绍凯, 张佐光. 高温处理对几种玄武岩纤维成分和拉伸性能的影响[J]. 材料工程, 2017, 45(6): 61-66.
CHEN Jing, GU Yi-zhuo, YANG Zhong-jia, LI Min, WANG Shao-kai, ZHANG Zuo-guang. Effects of Elevated Temperature Treatment on Compositions and Tensile Properties of Several Kinds of Basalt Fibers. Journal of Materials Engineering, 2017, 45(6): 61-66.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.001191      或      http://jme.biam.ac.cn/CN/Y2017/V45/I6/61
[1] MILITKY J, KOVACIC V. Ultimate mechanical properties of basalt filaments temperature[J]. Textile Research Journal, 1996, 66(4):225-229.
[2] 籍建云,许婷婷,顾兴宇. 增强沥青混凝土用短切玄武岩纤维优选试验研究[J]. 道路工程, 2010,(5):113-120. JI J Y, XU T T, GU X Y. Optimizing experimental study on short basalt fibers reinforced asphalt concrete[J]. Road Engineering, 2010,(5):113-120.
[3] LIU Q, SHAW M T, PAMAS R S, Investigation of basalt fiber composite mechanical properties for applications in transportation[J]. Polymer Composites, 2006, 27(1):41-48.
[4] 霍冀川,雷永林,王海滨,等. 玄武岩纤维的制备及其复合材料的研究进展[J]. 材料导报, 2006, 20(5):382-385. HUO J C, LEI Y L, WANG H B, et al. Progress of study on the preparation of basalt fiber and composite material of basalt fiber[J]. Materials Review,2006, 20(5):382-385.
[5] 曹海琳,郎海军,孟松鹤. 连续玄武岩纤维结构与性能试验研究[J]. 新科技纤维与应用,2007,32(5):8-13. CAO H L, LANG H J, MENG S H. Experimental research on the basic structure and properties of the continuous basalt fiber[J]. High Technology Fiber and Application,2007,32(5):8-13.
[6] SHI F J. A study on structure and properties of basalt fiber[J]. Applied Mechanics and Materials, 2012, 238:17-21.
[7] 李建军,张浩,刘艳春. 玄武岩纤维原矿的化学成分和物相分析[J]. 玻璃纤维, 2007,(6):1-4. LI J J, ZHANG H, LIU Y C. Chemical composition and physical analysis on basalt ore[J]. Glass Fiber, 2007,(6):1-4.
[8] DEÁK T, CZIGÁNY T. Chemical composition and mechanical properties of basalt and glass fibers:a comparison[J]. Textile Research Journal, 2009, 79(7):645-651.
[9] HAO L C, YU W D. Comparison of the morphological structure and thermal properties of basalt fiber and glass fiber[J]. Journal of Xi'an Polytechnic University,2009,23(2):328-334.
[10] SONG J B,LIU J X,ZHANG H L, et al. PVDF/PMMA/basalt fiber composites:morphology, melting and crystallization, structure, mechanical properties, and heat resistance[J]. Journal of Applied Polymer Science, 2014, 131(13):309-325.
[11] WU J Y, LI H, XIAN G J. Influence of elevated temperature on the mechanical and thermal performance of BFRP rebar[C]//5th International Conference on FRP Composites in Civil Engineering. Beijing:CICE,2010:69-72.
[12] 吴敬宇. 玄武岩纤维复合筋高温性能研究[D]. 哈尔滨:中国地震局工程力学研究所,2011. WU J Y. Study on the performance of BFRP rebar at elevated temperature[D]. Harbin:Institute of Engineering Mechanics, China Earthquake Administration, 2011.
[13] MOHAMMAD A S, ROLF-DIETER H, CHOKRI C. Improvement of thermo-mechanical properties of basalt fiber using heat resistant polymeric coatings[J]. Fibers and Polymers,2014, 15(10):2086-2094.
[14] LU Z Y, XIAN G J, LI H. Experimental study on the mechanical properties of basalt fibres and pultruded BFRP plates at elevated temperatures[J]. Polymers & Polymer Composites,2015, 23(5):277-283.
[15] 吴霞,陈慰来,王志钧,等. 玄武岩纤维纱线性能的试验研究[J]. 浙江理工大学学报,2012, 29(5):660-663. WU X, CHEN W L, WANG Z J, et al. The experimental research on basalt fiber yarn[J]. Journal of Zhejiang Sci-Tech University, 2012, 29(5):660-663.
[16] SAUDER C, LAMON J, PAILLER R. The tensile behavior of carbon fibers at high temperatures up to 2400℃[J]. Carbon,2004, 42(4):715-725.
[17] 孙建磊,李龙,张胜靖. 玄武岩纤维的研究进展、性能及其产品应用[J]. 中国纤检, 2010,(21):76-79. SUN J L, LI L, ZHANG S J. The research progress,properties and application[J]. China Fiber Inspection,2010,(21):76-79.
[18] 李福洲,李贵超,王浩明,等. 玄武岩纤维纱线的耐高温性能研究[J]. 功能材料,2015,46(3):03060-03063. LI F Z, LI G C, WANG H M, et al. Research on properties on high temperature resistance of basalt fiber yarn[J]. Functional Materials,2015, 46(3):03060-03063.
[19] 郑劲东,张兴刚,杨勇. 连续玄武岩纤维及其复合材料研究[J]. 玻璃钢/复合材料, 2009,(1):31-33. ZHENG J D, ZHANG X G, YANG Y. Research on continuous basalt fiber and its reinforced composite material[J]. FRP/CM, 2009, (1):31-33.
[20] 王正刚,张卫强,张义军,等. 玄武岩纤维性能及其鉴别方法[J]. 玻璃纤维, 2015, (3):40-47. WANG Z G, ZHANG W Q, ZHANG Y J, et al. Properties and identification of basalt fibers[J].Glass Fiber,2015,(3):40-47.
[1] 张晓颖, 荣新山, 徐吉成, 周向同, 吴智仁. 玄武岩纤维表面改性对生物膜附着性能的影响[J]. 材料工程, 2019, 47(5): 129-136.
[2] 鲁雄, 杨旭静, 段书用, 郑娟. 玻纤增强聚丙烯复合材料的应变率敏感特性[J]. 材料工程, 2018, 46(4): 146-151.
[3] 赵金华, 曹海琳, 晏义伍, 丁莉. 泡沫铝夹层结构复合材料低速冲击性能[J]. 材料工程, 2018, 46(1): 92-98.
[4] 曾少华, 申明霞, 段鹏鹏, 郑鸿奎, 王珠银. 碳纳米管-玻璃纤维织物增强环氧复合材料的结构与性能[J]. 材料工程, 2017, 45(9): 38-44.
[5] 马海焦, 刘向东, 吕凯, 张慧, 孟山旦. 含短切玻璃纤维的水玻璃精铸涂料的流变性[J]. 材料工程, 2016, 44(8): 93-97.
[6] 王亚杰, 王波, 张龙, 马宏毅. 玻璃纤维-铝合金正交层板的拉伸性能研究[J]. 材料工程, 2015, 43(9): 60-65.
[7] 余煜玺, 吴晓云, 伞海生. 常压干燥制备疏水性SiO2-玻璃纤维复合气凝胶及表征[J]. 材料工程, 2015, 43(8): 31-36.
[8] 倪昕晔, 李爱军, 钟萍, 林涛, 熊信柏, 顾卫东. 不同高温处理工艺对C/C复合材料生物相容性的影响[J]. 材料工程, 2014, 0(6): 62-67.
[9] 李恩重, 徐滨士, 王海斗, 郭伟玲. 玻璃纤维增强聚醚醚酮复合材料在水润滑下的摩擦学性能[J]. 材料工程, 2014, 0(3): 77-82,89.
[10] 魏化震, 张清辉, 李锦文. 玄武岩纤维增强酚醛树脂复合材料高温热分析研究[J]. 材料工程, 2013, 0(1): 64-67,84.
[11] 郭明恩, 孙祖莉, 边文凤, 宋小然, 栾桂卿. 真空导入工艺参数对复合材料孔隙含量的影响[J]. 材料工程, 2012, 0(10): 54-57,62.
[12] 陈邦峰, 贾泮江. ZL205A铝合金铸件偏析缺陷的断口形貌和化学成分[J]. 材料工程, 2010, 0(9): 1-6,24.
[13] 宋艳江, 黄丽坚, 朱鹏, 王晓东, 黄培. 偶联剂处理玻璃纤维改性聚酰亚胺摩擦磨损性能研究[J]. 材料工程, 2009, 0(2): 58-62.
[14] 王海鹏, 陈新文, 李晓骏, 马丽婷, 苏彬. 玻璃纤维复合材料不同温度条件拉伸强度统计分布[J]. 材料工程, 2008, 0(7): 76-78.
[15] 马宏毅, 李小刚, 李宏运. 玻璃纤维-铝合金层板的拉伸和疲劳性能研究[J]. 材料工程, 2006, 0(7): 61-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn