Please wait a minute...
材料工程  2017, Vol. 45 Issue (8): 132-138    DOI: 10.11868/j.issn.1001-4381.2016.001002
  综述 本期目录 | 过刊浏览 | 高级检索 |
李智敏, 李钊颖, 张茂林, 王媛, 黄云霞
西安电子科技大学 先进材料与纳米科技学院, 西安 710071
Research Progress of Photoanodes for Quantum Dot Sensitized Solar Cells
LI Zhi-min, LI Zhao-ying, ZHANG Mao-lin, WANG Yuan, HUANG Yun-xia
School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071, China
全文: PDF(1720 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 介绍量子点敏化太阳能电池的发展现状及趋势,针对光阳极改性来提高量子点敏化太阳能电池转化效率的方法,从半导体薄膜、量子点共敏化、量子点掺杂3个方面综合分析光阳极的研究进展和相关技术。根据制约电池效率的主要因素,提出量子点敏化太阳能电池的未来发展趋势,包括继续优化光阳极半导体薄膜的组成及结构、探索新型的宽光谱响应量子点以及发展高效的界面修饰技术等。
E-mail Alert
关键词 太阳能电池量子点敏化光阳极掺杂共敏化    
Abstract:This paper presents the development status and tendency of quantum dot sensitized solar cells. Photoanode research progress and its related technologies are analyzed in detail from the three ways of semiconductor thin films, quantum dot co-sensitization and quantum dot doping, deriving from the approach that the conversion efficiency can be improved by photoanode modification for quantum dot sensitized solar cells. According to the key factors which restrict the cell efficiency, the promising future development of quantum dot sensitized solar cells is proposed,for example,optimizing further the compositions and structures of semiconductor thin films for the photoanodes, exploring new quantum dots with broadband absorption and developing high efficient techniques of interface modification.
Key wordssolar cell    quantum dot sensitization    photoanode    doping    co-sensitization
收稿日期: 2016-08-22      出版日期: 2017-08-10
中图分类号:  TM914.4  
通讯作者: 李智敏(1976-),男,副教授,博士,主要从事新能源材料与器件的研究,联系地址:陕西省西安市太白南路2号西安电子科技大学(710071),     E-mail:
李智敏, 李钊颖, 张茂林, 王媛, 黄云霞. 量子点敏化太阳能电池光阳极的研究进展[J]. 材料工程, 2017, 45(8): 132-138.
LI Zhi-min, LI Zhao-ying, ZHANG Mao-lin, WANG Yuan, HUANG Yun-xia. Research Progress of Photoanodes for Quantum Dot Sensitized Solar Cells. Journal of Materials Engineering, 2017, 45(8): 132-138.
链接本文:      或
[1] GRÄTZEL M. Photoelectrochemical cells[J]. Nature, 2001, 414(6861):338-344.
[2] 倪萌, LEUNG M K, SUMATHY K. 太阳能电池研究的新进展[J]. 可再生能源, 2004, (2):9-11. NI M, LEUNG M K, SUMATHY K. Progress on solar cell research[J]. Renewable Energy Resources, 2004, (2):9-11.
[3] TIAN J, ZHANG Q, UCHAKER E, et al. Architectured ZnO photoelectrode for high efficiency quantum dot sensitized solar cells[J]. Energy & Environmental Science, 2013, 6(12):3542-3547.
[4] NOZIK A J, BEARD M C, LUTHER J M, et al. Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells[J]. Chemical Reviews, 2010, 110(11):6873-6890.
[5] NOZIK A J. Nanoscience and nanostructures for photovoltaics and solar fuels[J]. Nano Letters, 2010, 10(10):2735-2741.
[6] GORER S, HODES G. Quantum size effects in the study of chemical solution deposition mechanisms of semiconductor films[J]. Journal of Physical Chemistry, 1994, 98(20):5338-5346.
[7] SCHALLER R D, AGRANOVICH V M, KLIMOV V I. High-efficiency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states[J]. Nature Physics, 2005, 1(3):189-194.
[8] DU J, DU Z, HU J S, et al. Zn-Cu-In-Se quantum dot dolar cells with a certified power conversion efficiency of 11.6%[J]. Journal of the American Chemical Society, 2016, 138(12):4201-4209.
[9] SUN J, JIANG Y, ZHONG X, et al. Three-dimensional nanostructured electrodes for efficient quantum-dot-sensitized solar cells[J]. Nano Energy, 2017, 32:130-156.
[10] THAMBIDURAI M, MUTHUKUMARASAMY N, ARUL N S, et al. CdS quantum dot-sensitized ZnO nanorod-based photoelectrochemical solar cells[J]. Journal of Nanoparticle Research, 2011, 13(8):3267-3273.
[11] UNNI G E, DEEPK T G, NAIR A S. Fabrication of CdSe sensitized SnO2 nanofiber quantum dot solar cells[J]. Materials Science in Semiconductor Processing, 2016, 41:370-377.
[12] BAI S L, LU W H, LI D Q, et al. Synthesis of mesoporous TiO2 microspheres and their use as scattering layers in quantum dot sensitized solar cells[J]. Acta Physico-Chimica Sinica, 2014, 30(6):1107-1112.
[13] ZHANG S, LAN Z, WU J, et al. Preparation of novel TiO2 quantum dot blocking layers at conductive glass/TiO2 interfaces for efficient CdS quantum dot sensitized solar cells[J]. Journal of Alloys and Compounds, 2016, 656:253-258.
[14] ZHANG X, LIN Y, LIN Y, et al. Synthesis of hierarchical nanowires-based TiO2 spheres for their application as the light blocking layers in CdS/CdSe co-sensitized solar cells[J]. Journal of Materials Science:Materials in Electronics, 2015, 26(2):693-699.
[15] YU L, LI Z, LIU Y, et al. Mn-doped CdS quantum dots sensitized hierarchical TiO2 flower-rod for solar cell application[J]. Applied Surface Science, 2014, 305(7):359-365.
[16] KIM S K, RAJ C J, KIM H J. CdS/CdSe quantum dot-sensitized solar cells based on ZnO nanoparticle/nanorod composite electrodes[J]. Electronic Materials Letters, 2014, 10(6):1137-1142.
[17] SEOL M, KIM H, TAK Y, et al. Novel nanowire array based highly efficient quantum dot sensitized solar cell[J]. Chemical Communications, 2010, 46(30):5521-5523.
[18] CHEN Y, QIANG T, FU W, et al. Enhanced solar cell efficiency and stability using ZnS passivation layer for CdS quantum-dot sensitized actinomorphic hexagonal columnar ZnO[J]. Electrochimica Acta, 2014, 118(2):176-181.
[19] 梁柱荣,毕卓能,靳虎, 等. Al2O3修饰层对抑制CdSe量子点敏化太阳电池界面电子复合的研究[J]. 新能源进展, 2015, 3(4):245-250. LIANG Z R, BI Z N, JIN H, et al. Influence of Al2O3 buffer layer on interface charge recombination in CdSe quantum dot-sensitized solar cells[J]. Advances in New and Renewable Energy, 2015, 3(4):245-250.
[20] REN Z H, WANG Z, WANG R, et al. Effects of metal oxyhydroxide coatings on photoanode in quantum dot sensitized solar cells[J]. Chemistry of Materials, 2016, 28(7):2323-2330.
[21] WEI H, WANG G, SHI J, et al. Fumed SiO2 modified electrolytes for quantum dot sensitized solar cells with efficiency exceeding 11% and better stability[J]. Journal of Materials Chemistry A, 2016, 4(37):14194-14203.
[22] GU X, SONG D, ZHAO Y, et al. Preparation, optical properties and solar cell applications of CdS quantum dots synthesized by chemical bath deposition[J]. Journal of Materials Science:Materials in Electronics, 2013, 24(8):3009-3013.
[23] REDA S M. Enhance efficiency of solar cell using luminescence PbS quantum dots concentrators[J]. Journal of Fluorescence, 2015, 25(3):631-639.
[24] SUI X, TAO H, LOU X, et al. CdS quantum dots-sensitized TiO2 nanotube arrays for solar cells[J]. Journal of Wuhan University of Technology:Materials Science Edition, 2013, 28(1):17-21.
[25] LEE Y, LO Y. Highly efficient quantum-dot-sensitized solar cell based on Co-sensitization of CdS/CdSe[J]. Advanced Functional Materials, 2009, 19(19):604-609.
[26] JIAO J, ZHOU Z J, ZHOU W H, et al. CdS and PbS quantum dots co-sensitized TiO2 nanorod arrays with improved performance for solar cells application[J]. Materials Science in Semiconductor Processing, 2012, 16(2):435-440.
[27] MANJCEEVAN A, BANDARA J. Robust surface passivation of trap sites in PbS q-dots by controlling the thickness of CdS layers in PbS/CdS quantum dot solar cells[J]. Solar Energy Materials & Solar Cells, 2016, 147:157-163.
[28] JIAO S, WANG J, SHEN Q, et al. Surface engineering of PbS quantum dot sensitized solar cells with a conversion efficiency exceeding 7%[J]. Journal of Materials Chemistry A, 2016, 4(19):7214-7221.
[29] LI W J, PAN Z X, ZHONG X H. CuInSe2 and CuInSe2-ZnS based high efficiency "green" quantum dot sensitized solar cells[J]. Journal of Materials Chemistry A,2015, 3:1649-1655.
[30] NING Z, TIAN H, YUAN C et al. Solar cells sensitized with type-Ⅱ ZnSe-CdS core/shell colloidal quantum dots[J]. Chemical Communications, 2011, 47(5):1536-1538.
[31] SAHASRABUDHE A, BHATTACHARYYA S. Dual sensitization strategy for high performance core/shell/quasi-shell quantum dot solar cells[J]. Chemistry of Materials, 2015, 27(13):4848-4859.
[32] YANG J, ZHONG X. CdTe based quantum dot sensitized solar cells with efficiency exceeding 7% fabricated from quantum dots prepared in aqueous media[J]. Journal of Materials Chemistry A, 2016, 4(42):16553-16561.
[33] PAN Z, ZHANG H, CHENG K, et al. Highly efficient inverted type-I CdS/CdSe core/shell structure QD-sensitized solar cells[J]. Acs Nano, 2012, 6(5):3982-3991.
[34] LEE S H, JUNG C, KIM S W, et al. Synthesis of colloidal InAs/ZnSe quantum dots and their quantum dot sensitized solar cell (QDSSC) application[J]. Optical Materials, 2015, 49:230-234.
[35] WANG G, WEI H, LUO Y, et al. A strategy to boost the cell performance of CdSexTe1-x quantum dot sensitized solar cells over 8% by introducing Mn modified CdSe coating layer[J]. Journal of Power Sources, 2016, 302:266-273.
[36] SANTRA P K, KAMAT P V. Mn-doped quantum dot sensitized solar cells:a strategy to boost efficiency over 5%[J]. Journal of the American Chemical Society, 2012, 134(5):2508-2511.
[37] KIM B M, SON M K, KIM S K, et al. Improved performance of CdS/CdSe quantum dot-sensitized solar cells using Mn-doped PbS quantum dots as a catalyst in the counter electrode[J]. Electrochimica Acta, 2014, 117(4):92-98.
[38] KIM S K, GOPI C V V M, LEE J C, et al. Enhanced performance of branched TiO2 nanorod based Mn-doped CdS and Mn-doped CdSe quantum dot-sensitized solar cell[J]. Journal of Applied Physics, 2015, 117(16):163104.
[39] LEE J W, SON D Y, AHN T K, et al. Quantum-dot-sensitized solar cell with unprecedentedly high photocurrent[J]. Scientific Reports, 2013, 3:1050.
[40] JEONG M S, SON M K, KIM S K, et al. Cu-doped ZnO nanoporous film for improved performance of CdS/CdSe quantum dot-sensitized solar cells[J]. Thin Solid Films, 2014, 570:310-314.
[41] LI L, ZOU X, ZHOU H, et al. Cu-doped-CdS/In-doped-CdS co-sensitized quantum dot solar cells[J]. Journal of Nanomaterials, 2014, 2014(2):1-8.
[1] 史艳华, 赵杉林, 王玲, 梁平, 关学雷. 稀土Ce掺杂纳米晶Mn-Mo-Ce氧化物阳极及其选择电催化性能[J]. 材料工程, 2017, 45(9): 72-80.
[2] 刘涛, 赵小如, 蒋显武. 退火条件对Sn掺杂ZnO薄膜光电性能的影响[J]. 材料工程, 2017, 45(8): 19-23.
[3] 戴景杰, 张丰云, 王阿敏, 陈传忠, 翁飞. Nb掺杂对Ti-Al合金化层抗高温氧化性能的影响[J]. 材料工程, 2017, 45(2): 24-31.
[4] 刘欣伟, 陈勇, 陈昌兵, 张文通. N掺杂纳米TiO2/电气石复合材料的制备及其光催化性能[J]. 材料工程, 2016, 44(6): 104-109.
[5] 李月英, 郭伟华, 郝洪顺, 苏青, 王辉利, 秦磊, 高文元, 刘贵山. TiO2/SrTiO3核壳结构光阳极制备及其光电化学性能[J]. 材料工程, 2016, 44(3): 60-65.
[6] 何卫, 王利民, 蔡炜, 汤超, 姚辉. 氮掺杂碳纳米管/铝基复合材料的制备及性能[J]. 材料工程, 2016, 44(2): 49-55.
[7] 伏春平. 掺杂单层MoS2电子结构的第一性原理计算[J]. 材料工程, 2016, 44(12): 80-83.
[8] 张健, 汤旺, 邵磊, 余小峰, 龙春光, 陈荐. MgH2-K2Ti6O13-Ni球磨复合体系的微观结构与解氢性能[J]. 材料工程, 2016, 44(11): 101-106.
[9] 张凌云, 贾若琨, 孙旭辉, 张瑛洁, 刘春光. NH3气氛下N掺杂ZnO的制备及光电性能[J]. 材料工程, 2015, 43(4): 25-29.
[10] 曹文斌, 许军娜, 刘文秀, 孙芃, 张欣. 可见光活性氮掺杂纳米二氧化钛研究进展[J]. 材料工程, 2015, 43(3): 83-90.
[11] 邹凯, 李蓉萍, 刘永生, 田磊, 冯松. Sb掺杂ZnTe薄膜结构及其光电性能[J]. 材料工程, 2015, 43(3): 35-41.
[12] 陈娜, 苏革, 柳伟, 曹立新, 马德文, 戚新颖. 锰掺杂氧化镍薄膜的电沉积及性能[J]. 材料工程, 2014, 0(11): 67-72.
[13] 肖治垣, 杨穆清, 郦正能. 变体飞艇太阳能电池阵列工作特性的影响因素[J]. 材料工程, 2013, 0(7): 24-28,34.
[14] 熊瑜, 郑冀, 李燕, 刘雪佳, 梁璐. Al掺杂纳米氧化锌导电粉的性能与结构[J]. 材料工程, 2012, 0(9): 70-73.
[15] 胡志强, 刘显卿, 黄德锋, 高宏. 染料敏化太阳电池CuAl2O4/TiO2光阳极制备及性能[J]. 材料工程, 2012, 0(2): 63-66.
Full text



版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持