Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (8): 24-29    DOI: 10.11868/j.issn.1001-4381.2016.000382
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于RBF网络优化制备均匀粒度分布的微米级SiO2基相变调湿复合材料
张浩
安徽工业大学 建筑工程学院, 安徽 马鞍山 243032
Optimizing Preparation of Micron SiO2-based Phase Change and Humidity Controlling Composites with Uniform Particle Size Distribution Based on RBF Neural Network
ZHANG Hao
School of Civil Engineering and Architecture, Anhui University of Technology, Maanshan 243032, Anhui, China
全文: PDF(623 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以SiO2为载体、癸酸-棕榈酸为相变材料,采用溶胶-凝胶法制备微米级SiO2基相变调湿复合材料。运用均匀设计结合RBF网络优化制备参数,对最均匀粒度分布微米级SiO2基相变调湿复合材料进行表征。结果表明:当扩散系数为0.5时,RBF网络具有最佳的逼近效果;最优制备工艺参数:溶液pH值为4.27,去离子水用量为8.58,无水乙醇用量为4.83和超声波功率为316W;最均匀粒度分布微米级SiO2基相变调湿复合材料的d10d50d90分别为383.51,511.63,658.76nm,d90-d10实测值为275.25nm,实测值与预测值吻合较好,相对误差为-2.64%;最均匀粒度分布微米级SiO2基相变调湿复合材料在相对湿度为40%~60%时,平衡含湿量为0.0925~0.1493g/g,相变温度为20.02~23.45℃,相变焓为54.06~60.78J/g。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张浩
关键词 激光粒度RBF神经网络纳米级SiO2基相变调湿复合材料均匀粒度分布优化制备    
Abstract:With SiO2 as the carrier, decanoic acid-palmitic acid as a phase change material,the micron SiO2-based phase change and humidity controlling composite materials were prepared by sol-gel method. The scheme was optimized by uniform design in a combination with RBF neural network to optimizing preparation of micron SiO2-based phase change and humidity controlling composite materials. The performance of micron SiO2-based phase change and humidity controlling composite materials with optimal uniform particle size distribution were tested and characterized. The results show that RBF neural network has the best approximation effect, when spread is 0.5; optimization technology parameters are solution pH value 4.27, amount of deionized water (mole ratio between deionized water and tetraethyl orthosilicate) is 8.58, amount of absolute alcohol (mole ratio between absolute alcohol and tetraethyl orthosilicate) is 4.83 and ultrasonic wave power is 316W; micron SiO2-based phase change and humidity controlling composite materials with optimal uniform particle size distribution' d10 is 383.51nm, d50 is 511.63nm and d90 is 658.76nm, measured value of d90-d10 is 275.25nm, the measured value and the predicted value are in good agreement (relative error is -2.64%); micron SiO2-based phase change and humidity controlling composite materials with optimal uniform particle size distribution' equilibrium moisture content in the relative humidity of 40%-60% is 0.0925-0.1493g/g, phase transition temperature is 20.02-23.45℃ and phase change enthalpy is 54.06-60.78J/g.
Key wordslaser particle size(LPS)    RBF neural network    micron SiO2-based phase change and humidity controlling composite    uniform particle size distribution    optimizing preparation
收稿日期: 2016-03-28      出版日期: 2017-08-10
中图分类号:  TU522.1  
通讯作者: 张浩(1982-),男,博士,副教授,从事环保型建筑节能材料方面的研究工作,联系地址:安徽省马鞍山市雨山区安徽工业大学(东校区)建筑工程学院(243032),E-mail:fengxu19821018@163.com     E-mail: fengxu19821018@163.com
引用本文:   
张浩. 基于RBF网络优化制备均匀粒度分布的微米级SiO2基相变调湿复合材料[J]. 材料工程, 2017, 45(8): 24-29.
ZHANG Hao. Optimizing Preparation of Micron SiO2-based Phase Change and Humidity Controlling Composites with Uniform Particle Size Distribution Based on RBF Neural Network. Journal of Materials Engineering, 2017, 45(8): 24-29.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000382      或      http://jme.biam.ac.cn/CN/Y2017/V45/I8/24
[1] RAO Z H,WANG S F,ZHANG Z G.Energy saving latent heat storage and environmental friendly humidity-controlled materials for indoor climate[J].Renewable and Sustainable Energy Reviews,2012,16(5):3136-3145.
[2] HUYNH C K.Building energy saving techniques and indoor air quality:a dilemma[J].International Journal of Ventilation,2010,9(1):93-98.
[3] SHARMA A,TYAGI V V,CHEN C R,et al.Review on thermal energy storage with phase change materials and applications[J]. Renewable and Sustainable Energy Reviews,2009,13(2):318-345.
[4] BAKER J.New technology and possible advances in energy storage[J].Energy Policy,2008,36(12):4368-4373.
[5] PACHECO R,ORDÓÑEZ J,MARTÍNEZ G.Energy efficient design of building:a review[J].Renewable and Sustainable Energy Reviews,2012,16(6):3559-3573.
[6] 尚建丽,张浩,熊磊,等.脂肪酸/SiO2复合相变材料的制备及其织构影响因素的研究[J].材料研究学报,2015,29(10):757-766. SHANG J L,ZHANG H,XIONG L,et al.Preparation and texture of phase change materials of fatty acid/SiO2 composite[J].Chinese Journal of Materials Research,2015,29(10):757-766.
[7] 张浩,黄新杰,刘秀玉.棕榈醇-棕榈酸-月桂酸/SiO2复合相变调湿材料的制备[J].材料研究学报,2015,29(11):867-873. ZHANG H,HUANG X J,LIU X Y.Preparation of hexadecanol-palmitic acid-lauric acid/SiO2 composite as phase change material for humidity control[J].Chinese Journal of Materials Research,2015,29(11):867-873.
[8] 尚建丽,张浩,熊磊,等.基于均匀设计优化制备癸酸-棕榈酸/SiO2复合相变材料[J].材料工程,2015,43(9):94-102. SHANG J L,ZHANG H,XIONG L,et al.Optimized preparation of decanoic-palmitic acid/SiO2 composite phase change materials based on uniform design[J].Journal of Materials Engineering,2015,43(9):94-102.
[9] 张浩,顾恒星,黄新杰,等.基于均匀设计与BP神经网络优化制备SiO2基相变调湿复合材料的预测模型[J].过程工程学报,2015,15(4):548-554. ZHANG H,GU H X,HUANG X J,et al.Prediction model for optimizing preparation of SiO2-based phase change and humidity storage composites with uniform design and back-propagation neural network[J].The Chinese Journal of Process Engineering,2015,15(4):548-554.
[10] 张浩,黄新杰,刘秀玉,等.优化制备棕榈醇-棕榈酸-月桂酸/SiO2复合相变调湿材料[J].材料研究学报,2015,29(9):671-678. ZHANG H,HUANG X J,LIU X Y,et al.Optimization for preparation of phase change and humidity control composite materials of hexadecanol-palmitic acid-lauric acid/SiO2[J].Chinese Journal of Materials Research,2015,29(9):671-678.
[11] 尚建丽,张浩.癸酸-棕榈酸/SiO2相变储湿复合材料的制备与表征[J].复合材料学报,2016,33(2):341-349. SHANG J L,ZHANG H.Preparation and characterization of decanoic acid-palmitic acid/SiO2 phase change and humidity storage composites[J].Acta Materiae Compositae Sinica,2016,33(2):341-349.
[12] AMJADY N,KEYNIA F.A new neural network approach to short term load forecasting of electrical power systems[J].Energies,2011,4(3):488-503.
[13] NAWI N M,KHAN A,REHMAN M Z.A new levenberg marquardt based back propagation algorithm trained with cuckoo search[J].Procedia Technology,2013,11(1):18-23.
[14] 杨铎.基于Gauss-Newton法的空间管形拟合算法的研究[J].大连大学学报,2014,35(3):19-23. YANG D.Space tube-shaped fitting algorithm based on spatial Gauss-Newton method[J].Journal of Dalian University,2014,35(3):19-23.
[15] 韩敏,王亚楠.求解非线性回归问题的Newton算法[J].计算机学报,2010,33(5):841-846. HAN M,WANG Y N.A Newton algorithm for nonlinear regression[J].Chinese Journal of Computers,2010,33(5):841-846.
[1] 张浩, 黄新杰, 宗志芳, 刘秀玉. 基于吸附性能的生物质基多孔活性炭制备方案的响应面法优化[J]. 材料工程, 2017, 45(6): 67-72.
[2] 尚建丽, 张浩, 熊磊, 麻向龙. 基于均匀设计优化制备癸酸-棕榈酸/SiO2复合相变材料[J]. 材料工程, 2015, 43(9): 94-102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部       总访问数: 
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn