Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (8): 76-82    DOI: 10.11868/j.issn.1001-4381.2015.001382
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
5083铝合金热压缩流变应力曲线修正与本构方程
付平1,2, 刘栩2, 戴青松2,3, 张佳琪1, 邓运来1,3
1. 中南大学 轻合金研究院, 长沙 410083;
2. 广西柳州银海铝业股份有限公司, 广西 柳州 545062;
3. 中南大学 材料科学与工程学院, 长沙 410083
Modification of Flow Stress Curves and Constitutive Equations During Hot Compression Deformation of 5083 Aluminum Alloy
FU Ping1,2, LIU Xu2, DAI Qing-song2,3, ZHANG Jia-qi1, DENG Yun-lai1,3
1. Light Alloy Research Institute, Central South University, Changsha 410083, China;
2. Guangxi Liuzhou Yinhai Aluminum Co., Ltd., Liuzhou 545062, Guangxi, China;
3. School of Materials Science and Engineering, Central South University, Changsha 410083, China
全文: PDF(1167 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 在Gleeble-3800热模拟机上采用等温压缩实验研究5083铝合金在变形温度为523~723K、应变速率为0.01~10s-1、真应变为0~0.7条件下的高温流变应力行为。基于热传导对合金变形热效应的影响,对流变应力曲线进行了变形热修正。结果表明:热传导对变形过程中产生的温升影响不可忽略,其影响随着真应变的增加而更加显著;修正后的流变应力对峰值应力影响不大,但稳态流变应力软化趋势得到一定程度的减弱。建立了Zener-Hollomon参数的本构方程,可对5083铝合金在不同变形条件下的流变应力进行预测,温升修正后的流变应力值与本构方程的预测值吻合较好,平均相对误差仅为5.21%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
付平
刘栩
戴青松
张佳琪
邓运来
关键词 5083铝合金热压缩流变应力温升本构方程    
Abstract:The flow stress behavior of 5083 aluminum alloy was investigated under hot compression deformation at 523-723K,strain rates of 0.01-10s-1 and true strains of 0-0.7 with Gleeble-3800 thermal simulator. Based on the heat transfer effect on alloy deformation heat effect, the flow stress curves were corrected. The results show that influence of heat conduction can not be neglected and becomes more obvious with the increase of true strain. The corrected flow stress has little influence on the peak stress, but the steady flow stress softening trends to be diminished to some degree. The flow stress can be predicted by the Zener-Hollomon parameters in the constitutive equation. The corrected measured value exhibits a good agreement with the flow stress predicted by the constitutive equation, and the average relative error is only 5.21%.
Key words5083 aluminum alloy    hot compression    flow stress    temperature rise    constitutive equation
收稿日期: 2015-11-11      出版日期: 2017-08-10
中图分类号:  TG146.2+1  
通讯作者: 邓运来(1969-),男,教授,博士生导师,从事有色金属材料加工工程,联系地址:湖南省长沙市岳麓区中南大学本部特冶楼(410083),E-mail:luckdeng@csu.edu.cn     E-mail: luckdeng@csu.edu.cn
引用本文:   
付平, 刘栩, 戴青松, 张佳琪, 邓运来. 5083铝合金热压缩流变应力曲线修正与本构方程[J]. 材料工程, 2017, 45(8): 76-82.
FU Ping, LIU Xu, DAI Qing-song, ZHANG Jia-qi, DENG Yun-lai. Modification of Flow Stress Curves and Constitutive Equations During Hot Compression Deformation of 5083 Aluminum Alloy. Journal of Materials Engineering, 2017, 45(8): 76-82.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.001382      或      http://jme.biam.ac.cn/CN/Y2017/V45/I8/76
[1] 齐国栋, 杨鑫, 师雪飞, 等. 退火制度对冷轧和温轧的5083铝合金组织性能的影响[J]. 轻金属, 2010, (9):70-72. QI G D, YANG X, SHI X F, et al. The effect of deformation mode on the structure and property of annealed 5083 aluminum alloy[J]. Light Metals, 2010, (9):70-72.
[2] LIN S P, NIE Z R, HUANG H, et al. Annealing behavior of a modified 5083 aluminum alloy[J]. Materials & Design, 2010, 31(3):1607-1612.
[3] LEE Y B, DONG H S, PARK K T, et al. Effect of annealing temperature on microstructures and mechanical properties of a 5083 Al alloy deformed at cryogenic temperature[J]. Scripta Materialia, 2004, 51(4):355-359.
[4] 徐清波, 陶友瑞, 米芳. 5083铝合金高温流变本构关系研究[J]. 矿冶工程, 2013, 33(5):124-126. XU Q B, TAO Y R, MI F. Constitutive equation of rheological properties for 5083 aluminum alloy at elevated temperature[J]. Mining and Metallurgy Engineering, 2013, 33(5):124-126.
[5] 吴文祥, 孙德勤, 曹春艳, 等. 5083铝合金热压缩变形流变应力行为[J]. 中国有色金属学报, 2007, 17(10):1667-1671. WU W X, SUN D Q, CAO C Y, et al. Flow stress behavior of 5083 aluminum alloy under hot compression deformation[J]. The Chinese Journal of Nonferrous Metals,2007,17(10):1667-1671.
[6] 夏祥生, 张帷, 王长朋, 等. 稀土镁合金热压缩流变应力修正及热变形行为[J]. 精密成形工程, 2013, 5(4):1-6. XIA X S, ZHANG W, WANG C P, et al. Correction of hot compression flow stress and hot deformation behavior of rare earth magnesium alloy[J]. Journal of Netshape Forming Engineering, 2013, 5(4):1-6.
[7] 肖罡, 李落星, 叶拓. 6013铝合金平面热压缩流变应力曲线修正与本构方程[J]. 中国有色金属学报, 2014, 24(5):1268-1274. XIAO G, LI L X, YE T. Modification of flow stress curves and constitutive equations during hot plane compression deformation of 6013 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(5):1268-1274.
[8] 魏伟. 2198铝锂合金变形行为本构关系研究[D]. 沈阳:沈阳航空航天大学, 2012. WEI W. Research on constitutive relationship and deformation behavior of 2198 aluminum alloy[D]. Shenyang:Shenyang Aerospace University, 2012.
[9] SHEN J, XIE S S. Dynamic recovery and dynamic recrystallization of 7005 aluminum alloy during hot compression[J]. Acta Metallurgica Sinica, 2000, 13(1):379-386.
[10] 刘文义. 7085铝合金热加工力学行为及微观组织演变规律研究[D]. 重庆:重庆大学, 2014. LIU W Y. Research on mechanical property and microstructure evolution in hot working of 7085 aluminum alloy[D]. Chongqing:Chongqing University, 2014.
[11] LI L, ZHOU J, DUSZCZYK J. Determination of a constitutive relationship for AZ31B magnesium alloy and validation through comparison between simulated and real extrusion[J]. Journal of Materials Processing Technology, 2006, 172(3):372-380.
[12] GOELZ R L, SEMIATIN S L. The adiabatic correction factor for deformation beating during the uniaxial compression test[J]. Journal of Materials Engineering and Performance, 2001, 10(6):710-717.
[13] DEVADAS C, BARAGAR D, RUDDLE G, et al. The thermal and metallurgical state of steel strip during hot rolling. Part Ⅱ:factors influencing rolling loads[J]. Metallurgical and Materials Transactions A, 1991, 22(2):321-333.
[14] 谭丽琴, 王高潮, 甘雯晴, 等. 基于应变速率循环法的TA15钛合金超塑性本构方程[J]. 航空材料学报, 2014, 34(6):21-27. TAN L Q, WANG G C, GAN W Q,et al. Superplastic constitutive relationship of TA15 titanium alloy based on strain rate circulation method[J]. Journal of Aeronautical Materials,2014,34(6):21-27.
[15] 李成侣, 潘清林, 刘晓艳, 等. 2124铝合金的热压缩变形和加工图[J]. 材料工程, 2010, (4):10-14. LI C L, PAN Q L, LIU X Y, et al. Hot compression deformation and processing maps of 2124 aluminum alloy[J]. Journal of Materials Engineering, 2010, (4):10-14.
[1] 周强, 程军, 于振涛, 崔文芳. 一种新型近β型Ti-5.5Mo-6V-7Cr-4Al-2Sn-1Fe合金热变形行为[J]. 材料工程, 2019, 47(6): 121-128.
[2] 任书杰, 罗飞, 田野, 刘大博, 王克鲁, 鲁世强. A100超高强度钢的流变应力曲线修正与唯象本构关系[J]. 材料工程, 2019, 47(6): 144-151.
[3] 王宇, 熊柏青, 李志辉, 温凯, 黄树晖, 李锡武, 张永安. 新型超高强Al-Zn-Mg-Cu合金热压缩变形行为及微观组织特征[J]. 材料工程, 2019, 47(2): 99-106.
[4] 马琳, 李伟, 白娇娇, 赵丰停. 粉末冶金Ti-14Mo-2.1Ta-0.9Nb-7Zr合金热变形行为[J]. 材料工程, 2018, 46(10): 47-54.
[5] 杨志强, 刘正东, 何西扣, 刘宁. 反应堆压力容器用SA508Gr.4N钢的热变形行为[J]. 材料工程, 2017, 45(8): 88-95.
[6] 王忠军, 付学丹, 朱晶, 周乐, 王洪斌. ZK60和ZK60-1.0Er镁合金热压缩变形和加工图[J]. 材料工程, 2017, 45(3): 102-111.
[7] 程明阳, 郝世明, 谢敬佩, 王爱琴, 马窦琴, 孙亚丽. SiCP/Al-Cu复合材料的高温热变形行为[J]. 材料工程, 2017, 45(2): 17-23.
[8] 张坤, 臧金鑫, 陈军洲, 伊琳娜, 汝继刚, 康唯. 新型Al-Zn-Mg-Cu合金热变形组织演化[J]. 材料工程, 2017, 45(1): 14-19.
[9] 谢碧君, 郭逸丰, 徐斌, 孙明月, 李殿中. GH984G18合金热加工图及再结晶图研究[J]. 材料工程, 2016, 44(9): 16-23.
[10] 袁武华, 龚雪辉, 孙永庆, 梁剑雄. 0Cr16Ni5Mo低碳马氏体不锈钢的热变形行为及其热加工图[J]. 材料工程, 2016, 44(5): 8-14.
[11] 伍灿, 沈火明, 邓莎莎, 刘娟, 彭金方. 5083铝合金扭动微动磨损实验研究[J]. 材料工程, 2016, 44(4): 71-75.
[12] 仇琍丽, 高文理, 陆政, 冯朝辉. 7A85铝合金的热压缩流变行为与显微组织[J]. 材料工程, 2016, 44(1): 33-39.
[13] 郑漫庆, 王高潮, 喻淼真, 徐雪峰. 应变速率循环法构建TC4-DT钛合金本构方程[J]. 材料工程, 2014, 0(8): 32-35.
[14] 刘延辉, 姚泽坤, 宁永权, 郭鸿镇. 生物医用TC20钛合金高温变形行为及本构关系[J]. 材料工程, 2014, 0(7): 16-21.
[15] 李卿, 郭鸿镇, 王彦伟, 赵张龙, 姚泽坤. GH4049合金的热变形行为及组织演变[J]. 材料工程, 2014, 0(12): 55-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn