Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (8): 88-95    DOI: 10.11868/j.issn.1001-4381.2016.000887
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
反应堆压力容器用SA508Gr.4N钢的热变形行为
杨志强1, 刘正东1, 何西扣1, 刘宁1,2
1. 钢铁研究总院 特殊钢研究所, 北京 100081;
2. 昆明理工大学 材料科学与工程学院, 昆明 650093
Hot Deformation Behavior of SA508Gr.4N Steel for Reactor Pressure Vessels
YANG Zhi-qiang1, LIU Zheng-dong1, HE Xi-kou1, LIU Ning1,2
1. Institute for Special Steels, Central Iron and Steel Research Institute, Beijing 100081, China;
2. Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
全文: PDF(8619 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 利用Gleeble-1500D热模拟试验机,在温度为1050~1250℃、应变速率为0.001~0.1s-1、真应变量0.16的条件下,研究和分析SA508Gr.4N钢高温塑性变形及动态再结晶行为。结果表明:SA508Gr.4N钢的高温真应力-应变曲线主要以动态再结晶为特征,峰值应力随变形温度的降低或应变速率的升高而增加,属于温度和应变速率敏感材料;在真应力-应变曲线的基础上,建立材料热变形本构方程,较好地表征了材料高温流变特征,其热激活能为383.862kJ/mol;其硬化率-应力(θ-σ)曲线均呈现拐点且-dθ/dσ-σ曲线出现极小值;临界应变随应变速率的增大与变形温度的降低而增加,且临界应变(εc)与峰值应变(εp)之间具有一定相关性,即εc/εp=0.517;临界应变与Z参数之间的函数关系为εc=8.57×10-4Z0.148
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨志强
刘正东
何西扣
刘宁
关键词 SA508Gr.4N钢热变形本构方程动态再结晶临界应变    
Abstract:The high-temperature plastic deformation and dynamic recrystallization behavior of SA508Gr.4N steel were investigated through hot deformation tests in a Gleeble1500D thermal mechanical simulator. The compression tests were performed in the temperature range of 1050-1250℃ and the strain rate range of 0.001-0.1s-1 with true strain of 0.16. The results show that from the high-temperature true stress-strain curves of the SA508Gr.4N steel, the main feature is dynamic recrystallization,and the peak stress increases with the decrease of deformation temperature or the increase of strain rate, indicating the experimental steel is temperature and strain rate sensitive material. The constitutive equation for SA508Gr.4N steel is established on the basis of the true stress-strain curves, and exhibits the characteristics of the high-temperature flow behavior quite well, while the activation energy of the steel is determined to be 383.862kJ/mol. Furthermore, an inflection point is found in the θ-σ curve, while the -dθ/dσ-σ curve shows a minimum value. The critical strain increases with increasing strain rate and decreasing deformation temperature. A linear relationship between critical strain (εc) and peak strain (εp) is found and could be expressed as εc/εp=0.517. The predicted model of critical strain could be described as εc=8.57×10-4Z0.148.
Key wordsSA508Gr.4N steel    hot deformation    constitutive equation    dynamic recrystallization    critical strain
收稿日期: 2016-07-21      出版日期: 2017-08-10
中图分类号:  TG142  
通讯作者: 刘正东(1966-),男,博士,教授,研究方向为火电站、核电站和核动力用钢,联系地址:北京市海淀区学院南路76号钢铁研究总院特殊钢研究所(100081),E-mail:liu_zhengdong@263.net     E-mail: liu_zhengdong@263.net
引用本文:   
杨志强, 刘正东, 何西扣, 刘宁. 反应堆压力容器用SA508Gr.4N钢的热变形行为[J]. 材料工程, 2017, 45(8): 88-95.
YANG Zhi-qiang, LIU Zheng-dong, HE Xi-kou, LIU Ning. Hot Deformation Behavior of SA508Gr.4N Steel for Reactor Pressure Vessels. Journal of Materials Engineering, 2017, 45(8): 88-95.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000887      或      http://jme.biam.ac.cn/CN/Y2017/V45/I8/88
[1] YASUHIKO T, IKUO S. Development of high purity large forgings for nuclear power plants[J]. Journal of Nuclear Materials, 2011, 417:854-859.
[2] SUZUKI K, KURIHARA I, SASAKI T, et al. Application of high strength Mn-Mo-Ni steel to pressure vessels for nuclear power plant[J]. Nuclear Engineering and Design, 2001, 206:261-278.
[3] 冯柳, 周邦新, 彭剑超, 等. RPV模拟钢中纳米富Cu析出相的复杂晶体结构表征[J]. 材料工程, 2015, 43(7):80-86. FENG L, ZHOU B X, PENG J C, et al. Characterization of a complex crystal structure within Cu-rich precipitates in RPV model steel[J]. Journal of Materials Engineering, 2015, 43(7):80-86.
[4] 何西扣, 李昌义, 刘正东, 等. 反应堆压力容器用低合金钢平衡相热力学计算与分析[J]. 金属热处理, 2013, 38(5):14-17. HE X K, LI C Y, LIU Z D, et al. Thermodynamic calculation and analysis on equilibrium phase in low alloy steel for reactor pressure vessel[J]. Heat Treatment of Metals, 2013, 38(5):14-17.
[5] JIN H H, KWON J, SHIN C S. Evolution of radiation defect and radiation hardening in heat treated SA508 Gr3 steel[J]. Nuclear Instruments and Methods in Physics Research Section B, 2014, 319:24-28.
[6] HECTOR P R, HARRY K D H B. Continuous cooling transformations in nuclear pressure vessel steels[J]. Metallurgical and Materials Transactions A, 2014, 45(11):4897-4906.
[7] 王小彬, 李玉光, 罗英, 等. 超临界水冷堆压力容器设计[J]. 一重技术, 2015, (3):18-21. WANG X B, LI Y G, LUO Y, et al. Design of supercritical water-cooled reactor pressure vessel[J]. CFHI Technology, 2015, (3):18-21.
[8] 李昌义, 刘正东, 林肇杰, 等. 反应堆压力容器用钢的淬透性问题[J]. 材料热处理学报, 2011, 32(6):68-72. LI C Y, LIU Z D, LIN Z J, et al. Hardenability of nuclear reactor pressure vessel steels[J]. Transactions of Materials and Heat Treatment, 2011, 32(6):68-72.
[9] PARK S G, LEE K H, MIN K D, et al. Characterization of phase fractions and disorientations on tempered bainitic/martensitic Ni-Cr-Mo low alloy RPV steel with various Ni content[J]. Metals and Materials International, 2013, 19(1):49-54.
[10] PARK S G, KIM M C, LEE K H, et al. Correlation of the thermodynamic calculation and the experimental observation of Ni-Mo-Cr low alloy steel changing Ni, Mo, and Cr contents[J]. Journal of Nuclear Materials, 2010, 407:126-135.
[11] KIM M C, PARK S G, LEE K H, et al. Comparison of fracture properties in SA508 Gr.3 and Gr.4N high strength low alloy steels for advanced pressure vessel materials[J]. International Journal of Pressure Vessels and Piping, 2015, 131:60-66.
[12] 杨志强, 刘勇, 田保红, 等. TiC/Cu-Al2O3 复合材料的强化机理及动态再结晶行为[J]. 中国有色金属学报, 2014, 24(6):1524-1531. YANG Z Q, LIU Y, TIAN B H, et al. Strengthening mechanism and dynamic recrystallization behavior of TiC/Cu-Al2O3 composite[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(6):1524-1531.
[13] 黄烁, 王磊, 张北江, 等. GH4706合金的热变形行为与显微组织演变[J]. 材料工程, 2015, 43(2):41-46. HUANG S, WANG L, ZHANG B J, et al. Hot deformation behavior and microstructure evolution of GH4706 alloy[J]. Journal of Materials Engineering, 2015, 43(2):41-46.
[14] 陈贵清, 傅高升, 程超增, 等. 应变速率对3003铝合金热变形动态再结晶组织的影响[J]. 材料热处理学报, 2012, 33(10):26-31. CHEN G Q, FU G S, CHENG C Z, et al. Effects of strain rate on dynamic recrystallization microstructure of 3003 aluminum alloy in process of hot deformation[J]. Transactions of Materials and Heat Treatment, 2012, 33(10):26-31.
[15] SELLARS C M, MCTEGART W J. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9):1136-1138.
[16] 仇琍丽, 高文理, 陆政, 等. 7A85铝合金的热压缩流变行为与显微组织[J]. 材料工程, 2016, 44(1):33-39. QIU L L, GAO W L, LU Z, et al. Flow behavior and microstructure of 7A85 aluminum alloy during hot compression[J]. Journal of Materials Engineering, 2016, 44(1):33-39.
[17] 袁武华, 龚雪辉, 孙永庆, 等. 0Cr16Ni5Mo低碳马氏体不锈钢的热变形行为及其热加工图[J].材料工程,2016,44(5):8-14. YUAN W H, GONG X H, SUN Y Q, et al. Hot deformation behavior and processing map of 0Cr16Ni5Mo low carbon martensitic stainless steel[J]. Journal of Materials Engineering, 2016, 44(5):8-14.
[18] POLIAK E I, JONAS J J. Initiation of dynamic recrystallization in constant strain rate hot deformation[J]. ISIJ International, 2003, 43(5):684-691.
[19] 赵业青, 李岩, 鲁法云, 等. 7150铝合金热变形行为及微观组织[J]. 航空材料学报, 2015, 35(3):18-23. ZHAO Y Q, LI Y, LU F Y, et al. Flow stress behavior and microstructure of 7150 aluminum alloy during hot deformation[J]. Journal of Aeronautical Materials, 2015, 35(3):18-23.
[20] 高英俊, 罗志荣, 黄礼琳, 等. 变形合金的亚晶组织演变的相场模型[J]. 金属学报, 2012, 48(10):1215-1222. GAO Y J, LUO Z R, HUANG L L, et al. Phase field model for microstructure evolution of subgrain in deformation alloy[J]. Acta Metallurgica Sinica, 2012, 48(10):1215-1222.
[21] HUANG K, LOGE R E. A review of dynamic recrystallization phenomena in metallic materials[J]. Materials & Design, 2016, 111:548-574.
[22] YANG Z Q, LIU Y, TIAN B H, et al. Model of critical strain for dynamic recrystallization in 10%TiC/Cu-Al2O3 composite[J]. Journal of Central South University, 2014, 21(11):4059-4065.
[23] FANG B, JI Z, LIU M, et al. Critical strain and models of dynamic recrystallization for FGH96 superalloy during two-pass hot deformation[J]. Materials Science and Engineering:A, 2014, 593:8-15.
[1] 周强, 程军, 于振涛, 崔文芳. 一种新型近β型Ti-5.5Mo-6V-7Cr-4Al-2Sn-1Fe合金热变形行为[J]. 材料工程, 2019, 47(6): 121-128.
[2] 万鹏, 王克鲁, 鲁世强, 陈虚怀, 周峰. 基于应变补偿和PSO-BP神经网络的Ti-2.7Cu合金本构关系[J]. 材料工程, 2019, 47(4): 113-119.
[3] 赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙. 石墨烯纳米片增强铝基复合材料的动态力学行为[J]. 材料工程, 2019, 47(3): 23-29.
[4] 王宇, 熊柏青, 李志辉, 温凯, 黄树晖, 李锡武, 张永安. 新型超高强Al-Zn-Mg-Cu合金热压缩变形行为及微观组织特征[J]. 材料工程, 2019, 47(2): 99-106.
[5] 朱怀沈, 聂义宏, 赵帅, 王宝忠. 镍基617合金动态再结晶微观组织演变与预测[J]. 材料工程, 2018, 46(6): 80-87.
[6] 马琳, 李伟, 白娇娇, 赵丰停. 粉末冶金Ti-14Mo-2.1Ta-0.9Nb-7Zr合金热变形行为[J]. 材料工程, 2018, 46(10): 47-54.
[7] 付平, 刘栩, 戴青松, 张佳琪, 邓运来. 5083铝合金热压缩流变应力曲线修正与本构方程[J]. 材料工程, 2017, 45(8): 76-82.
[8] 王忠军, 付学丹, 朱晶, 周乐, 王洪斌. ZK60和ZK60-1.0Er镁合金热压缩变形和加工图[J]. 材料工程, 2017, 45(3): 102-111.
[9] 程明阳, 郝世明, 谢敬佩, 王爱琴, 马窦琴, 孙亚丽. SiCP/Al-Cu复合材料的高温热变形行为[J]. 材料工程, 2017, 45(2): 17-23.
[10] 张坤, 臧金鑫, 陈军洲, 伊琳娜, 汝继刚, 康唯. 新型Al-Zn-Mg-Cu合金热变形组织演化[J]. 材料工程, 2017, 45(1): 14-19.
[11] 袁武华, 龚雪辉, 孙永庆, 梁剑雄. 0Cr16Ni5Mo低碳马氏体不锈钢的热变形行为及其热加工图[J]. 材料工程, 2016, 44(5): 8-14.
[12] 张施琦, 冯定, 张跃, 洪继要. 新型超高强度热冲压用钢的热变形行为及本构关系[J]. 材料工程, 2016, 44(5): 15-21.
[13] 潘素平, 陈宇强, 宋文炜, 刘文辉. 初始组织特征对2E12铝合金热变形行为的影响[J]. 材料工程, 2016, 44(11): 22-32.
[14] 仇琍丽, 高文理, 陆政, 冯朝辉. 7A85铝合金的热压缩流变行为与显微组织[J]. 材料工程, 2016, 44(1): 33-39.
[15] 谢俊峰, 朱有利, 黄元林, 白昶. 2A12与2A11铝合金超声波焊接工艺与组织研究[J]. 材料工程, 2015, 43(3): 54-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn