Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (8): 96-101    DOI: 10.11868/j.issn.1001-4381.2015.001284
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于应力松弛实验对服役25Cr35Ni型耐热钢的高温性能评估
许军, 李会芳, 程从前, 曹铁山, 赵杰
大连理工大学 材料科学与工程学院, 辽宁 大连 116024
High Temperature Performance Evaluation of As-serviced 25Cr35Ni Type Heat-resistant Steel Based on Stress Relaxation Tests
XU Jun, LI Hui-fang, CHENG Cong-qian, CAO Tie-shan, ZHAO Jie
School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
全文: PDF(3385 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以服役的25Cr35Ni型钢为对象,研究利用应力松弛实验开展高温性能评估的方法以及对持久性能的预测效果。结果表明:由于高温服役后晶界处碳化物出现网链状和奥氏体基体内二次碳化物明显粗化,25Cr35Ni型耐热钢持久性能降低。通过得到的不同温度和应力的松弛蠕变速率曲线及外推关系,结合松弛蠕变速率-断裂时间关系方程,可以实现由松弛实验及少量蠕变持久实验开展持久寿命评估。与基于高温持久实验的预测结果比较,两者吻合较好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
许军
李会芳
程从前
曹铁山
赵杰
关键词 25Cr35Ni型耐热钢应力松弛寿命预测TTP参数法    
Abstract:Based on an as-serviced 25Cr35Ni type steel, the high temperature property evaluation using stress relaxation test(SRT) method and residual life prediction were studied. The results show that creep rupture property decreases because of the formation of network carbides along grain boundaries and coarsening of secondary carbides in the austenitic matrix. Based on the relationship of stress relaxation strain rate curves obtained at different temperatures, and the extrapolation equation of stress relaxation rate-rupture time, it is capable to perform residual life evaluation by combining SRT data and a small amount of creep rupture test(CRT). Good agreement is observed for predicting results performed by current method and traditional method.
Key words25Cr35Ni type heat-resistant steel    stress relaxation    life prediction    TTP parameter method
收稿日期: 2015-10-26      出版日期: 2017-08-10
中图分类号:  TG142.73  
通讯作者: 赵杰(1964-),男,教授,博士,研究方向为材料强度及可靠性,联系地址:大连理工大学材料科学与工程学院(116024),E-mail:jiezhao@dlut.edu.cn     E-mail: jiezhao@dlut.edu.cn
引用本文:   
许军, 李会芳, 程从前, 曹铁山, 赵杰. 基于应力松弛实验对服役25Cr35Ni型耐热钢的高温性能评估[J]. 材料工程, 2017, 45(8): 96-101.
XU Jun, LI Hui-fang, CHENG Cong-qian, CAO Tie-shan, ZHAO Jie. High Temperature Performance Evaluation of As-serviced 25Cr35Ni Type Heat-resistant Steel Based on Stress Relaxation Tests. Journal of Materials Engineering, 2017, 45(8): 96-101.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.001284      或      http://jme.biam.ac.cn/CN/Y2017/V45/I8/96
[1] 马洛宁,王天佑,张峥.短时氧化对定向凝固高温合金不同取向腐蚀性能的影响[J].材料工程,2016,44(7):78-87. MA L N,WANG T Y,ZHANG Z.Influence of short-time oxidation on corrosion properties of directionally solidified superalloys with different orientations[J].Journal of Materials Engineering,2016,44(7):78-87.
[2] 左平,魏大盛,王延荣.FGH95粉末高温合金裂纹闭合效应及裂纹扩展特性研究[J].材料工程,2015,43(8):56-61. ZUO P,WEI D S,WANG Y R.Crack closure behavior and crack propagation characteristic of FGH95 powder metallurgy superalloy[J].Journal of Materials Engineering,2015,43(8):56-61.
[3] 杨万鹏,胡本芙,刘国权,等.高性能镍基粉末高温合金中γ'相形态致锯齿晶界形成机理研究[J].材料工程,2015,43(6):7-13. YANG W P,HU B F,LIU G Q,et al.Formation mechanism of serrated grain boundary caused by different morphologies of γ' phase in a high-performance nickel-based powder metallurgy superalloy[J].Journal of Materials Engineering,2015,43(6):7-13.
[4] 赵杰.耐热钢持久性能的统计分析及可靠性预测[M].北京:科学出版社,2011.
[5] RAY A K,KUMAR S,KRISHNA G,et al.Microstructural studies and remnant life assessment of eleven years service exposed reformer tube[J].Materials Science and Engineering:A,2011,529(1):102-112.
[6] SHRESTHA T,BASIRAT M,CHARIT I,et al.Creep rupture behavior of Grade 91 steel[J].Materials Science and Engineering:A,2013,565:382-391.
[7] 江冯,李萍,程从前,等.θ投影法和复合模型在预测耐热钢蠕变行为的比较分析[J].材料工程,2015,43(7):87-92. JIANG F,LI P,CHENG C Q,et al.Comparative analysis of creep behavior prediction of heat resistant steel based on theta projection and composite model[J].Journal of Materials Engineering,2015,43(7):87-92.
[8] SINHA N K,SINHA S.Stress relaxation at high temperatures and the role of delayed elasticity[J].Materials Science and Engineering:A,2005,393(1-2):179-190.
[9] LIU P,ZONG Y,SHAN D,et al.Relationship between constant-load creep,decreasing-load creep and stress relaxation of titanium alloy[J].Materials Science and Engineering:A,2015,638:106-113.
[10] 湛利华,阳凌.时效蠕变与时效应力松弛行为转换关系[J].塑性工程学报,2013,20(3):126-131. ZHAN L H,YANG L.Research on conversion relationship between aging creep and aging stress relaxation[J].Journal of Plasticity Engineering,2013,20(3):126-131.
[11] WOODFORD D A,WERESZCZAK A A,BAKKERW T.Stress relaxation testing as a basis for creep analysis and design of silicon nitride[J].Journal of Engineering for Gas Turbines and Power,2000,122(4):206-211.
[12] WOODFORD D A.Stress relaxation testing of service exposed IN738 for creep strength evaluation[J].Journal of Engineering for Gas Turbines and Power,2000,122(7):451-456.
[13] RAO G R,GUPTA O P,PRADHAN B.Application of stress relaxation testing in evaluation of creep strength of a tungsten-alloyed 10% Cr cast steel[J].International Journal of Pressure Vessels and Piping,2011,88(2):65-74.
[14] BOSE S C,SINGH K,JAYARAMAN G.Application of stress relaxation test methodology for predicting creep life of a large steam turbine rotor steel (1CrMoV)[J].Journal of Testing and Evaluation,2003,31(3):183-195.
[15] SINHA N K,SINHA S.Stress relaxation at high temperatures and the role of delayed elasticity[J].Materials Science and Engineering:A,2005,393(1-2):179-190.
[16] GUO J Q,SHI H C,MENG W Z.Prediction methodology of creep performance from stress relaxation measurements[J].Applied Mechanics and Materials,2013,401-403:920-923.
[17] BOSE S C,SINGH K,SWAMINATHAN J,et al.Prediction of creep life of X10CrMoVNbN-91(P-91) steel through short term stress relaxation test methodology[J].Materials Science and Technology,2004,20(10):1290-1296.
[18] DALEO J A,ELLISION K A,WOODFORD D A.Application of stress relaxation testing in metallurgical life assessment evaluations of GTD111 alloy turbine buckets[J].Journal of Engineering for Gas Turbines and Power,1999,12(1):129-137.
[19] WOODFORD D A.Advances in the use of stress relaxation data for design and life assessment in combustion turbines[J].JSME International Journal,2002,45(1):98-103.
[20] ZHU Z,CHENG C,ZHAO J,et al.High temperature corrosion and microstructure deterioration of KHR35H radiant tubes in continuous annealing furnace[J].Engineering Failure Analysis,2012,21:59-66.
[21] SHI S,LIPPOLD J C.Microstructure evolution during service exposure of two cast,heat-resisting stainless steels-HP-Nb modified and 20-32Nb[J].Materials Characterization,2008,59(8):1029-1040.
[22] De ALMEIDA L H,RIBEIRO A F,Le MAY I.Microstructural characterization of modified 25Cr-35Ni centrifugally cast steel furnace tubes[J].Materials Characterization,2002,49(3):219-229.
[23] NUNES F C,De ALMEIDA L H,DILLE J,et al.Microstructural changes caused by yttrium addition to NbTi-modified centrifugally cast HP-type stainless steels[J].Materials Characterization,2007,58(2):132-142.
[24] CHANDLER H D.A comparison between steady state creep and stress relaxation in copper[J].Materials Science and Engineering:A,2010,527(23):6219-6223.
[25] 曹铁山,方旭东,程从前,等.应力松弛方法研究2种HR3C耐热钢的高温蠕变行为[J].金属学报,2014,50(11):1343-1349. CAO T S,FANG X D,CHENG C Q,et al.Creep behavior of two kinds of HR3C heat resistant steels based on stress relaxation tests[J].Acta Metallurgica Sinica,2014,50(11):1343-1349.
[26] SWAMINATHAN J,GUGULOTH K,GUNJAN M,et al.Failure analysis and remaining life assessment of service exposed primary reformer heater tubes[J].Engineering Failure Analysis,2008,15(4):311-331.
[27] 赵杰,李东明,方园园.Manson-Haferd常数的选择及在蠕变持久寿命预测中的应用[J].材料工程,2009,(6):30-34. ZHAO J,LI D M,FANG Y Y.Selection of Manson-Haferd constants and its application on rupture life prediction[J].Journal of Materials Engineering,2009,(6):30-34.
[28] ZHAO J,HAN S Q,XIE S M,et al.Remaining life assessment of a 1Cr5Mo steel by using Z-parameter method[J].Acta Metallurgica Sinica(English Letters),2009,17(4):601-605.
[29] 郭建亭.高温合金材料学(上)应用基础理论[M].北京:科学出版社,2008.
[30] UL-HAMID A,TAWANCY H M,MOHAMMED A I,et al.Failure analysis of furnace radiant tubes exposed to excessive temperature[J].Engineering Failure Analysis,2006,13(6):1005-1021.
[1] 曹铁山, 程从前, 朱月梅, 张弘伟, 刘松峰, 赵杰. CrMoWV钢的应力松弛行为及其预测[J]. 材料工程, 2017, 45(5): 106-111.
[2] 任魏巍, 邹林池, 张兴峰, 符殿宝, 陈俊锋. 7050铝合金时效成形中应力松弛行为与回弹方程[J]. 材料工程, 2016, 44(9): 89-95.
[3] 左平, 魏大盛, 王延荣. FGH95粉末高温合金裂纹闭合效应及裂纹扩展特性研究[J]. 材料工程, 2015, 43(8): 56-61.
[4] 江冯, 李萍, 程从前, 刘春慧, 赵杰. θ投影法和复合模型在预测耐热钢蠕变行为的比较分析[J]. 材料工程, 2015, 43(7): 87-92.
[5] 童第华, 吴学仁, 刘建中, 胡本润, 陈勃. 基于小裂纹理论的铸造钛合金ZTC4疲劳寿命预测[J]. 材料工程, 2015, 43(6): 60-65.
[6] 齐红宇, 马立强, 李少林, 杨晓光, 王亚梅, 魏洪亮. 等离子热障涂层构件高温热疲劳寿命预测研究[J]. 材料工程, 2014, 0(7): 67-72.
[7] 张艳斌, 鲁连涛, 薛弼一. 喷丸处理对6151-T6铝合金旋转弯曲疲劳性能的影响[J]. 材料工程, 2014, 0(4): 73-78.
[8] 王欣, 高玉魁, 王强, 宋颖刚, 陆峰. 再次喷丸周期对TC18钛合金疲劳寿命的影响[J]. 材料工程, 2012, 0(2): 67-71.
[9] 刘春慧, 程从前, 赵杰, 祝志超, 马海涛. MHZ常数在耐热钢持久性能预测中的应用[J]. 材料工程, 2012, 0(10): 12-16.
[10] 赵杰, 李东明, 方园园. Manson-Haferd常数的选择及在蠕变持久寿命预测中的应用[J]. 材料工程, 2009, 0(6): 30-34.
[11] 许超, 张国栋, 苏彬. 高周疲劳和低周疲劳统一的能量表征方法研究[J]. 材料工程, 2007, 0(8): 65-68,72.
[12] 刘勇, 尹钟大, 朱景川, 姜越. 工艺因素对TC4合金应力松弛行为的影响[J]. 材料工程, 2005, 0(4): 38-41.
[13] 魏洪亮, 杨晓光, 于慧臣. GH4169合金高温力学行为本构建模及参数识别[J]. 材料工程, 2005, 0(4): 42-45.
[14] 高宏波, 谢守明, 赵杰, 王来, 韩双起. 12Cr1MoV钢组织转变与剩余寿命预测[J]. 材料工程, 2005, 0(3): 40-42.
[15] 朱华, 张洪雁, 杨希仁, 章菊华. 计算机辅助航空橡胶和密封剂老化寿命预测[J]. 材料工程, 2001, 0(7): 45-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部       总访问数: 
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn