Please wait a minute...
 
2222材料工程  2017, Vol. 45 Issue (9): 129-135    DOI: 10.11868/j.issn.1001-4381.2016.000714
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
航空用7475-T7351铝合金厚板耐腐蚀性能
刘铭1,2,*(), 李惠曲1,2, 陈军洲1,2, 李国爱1,2, 陈高红1,2
1 北京航空材料研究院, 北京 100095
2 北京市先进铝合金材料及应用工程技术研究中心, 北京 100095
Corrosion Resistance of 7475-T7351 Aluminum Alloy Plate for Aviation
Ming LIU1,2,*(), Hui-qu LI1,2, Jun-zhou CHEN1,2, Guo-ai LI1,2, Gao-hong CHEN1,2
1 Beijing Institute of Aeronautical Materials, Beijing 100095, China
2 Beijing Engineering Research Center of Advanced Aluminum Alloys and Applications, Beijing 100095, China
全文: PDF(4268 KB)   HTML ( 10 )  
输出: BibTeX | EndNote (RIS)      
摘要 

研究航空用7475-T7351铝合金厚板晶间腐蚀及剥落腐蚀性能,并利用金相和透射电镜分析该合金的腐蚀行为。结果表明:7475铝合金无明显晶间腐蚀,剥落腐蚀程度由表层的EA级递增至心部EC级。7475铝合金厚板发生剥落腐蚀主要是由于合金为片状组织,同时晶界存在由电偶腐蚀构成的通路,晶界腐蚀产物体积膨胀产生楔入力使晶间腐蚀沿着与表面平行的方向发展并逐步演变为剥落腐蚀。再结晶程度由表层到中心逐渐降低,晶粒长宽比增加,剥落腐蚀倾向增大,导致表层到心部的剥落腐蚀程度增加。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘铭
李惠曲
陈军洲
李国爱
陈高红
关键词 7475铝合金晶间腐蚀剥落腐蚀再结晶    
Abstract

The intergranular corrosion and exfoliation corrosion properties of 7475-T7351 aluminum alloy plate for aviation were investigated, and the corrosion behaviors of the alloy were analyzed by metallographic analysis(MA) and transmission electron microscope(TEM). The results show that no obvious intergranular corrosion is observed, but exfoliation corrosion grade of 7475-T7351 aluminum alloy increases from EA on surface to EC in the core. The exfoliation corrosion of 7475 alloy plate is mainly because of the typical lamellar structure, and the pathway formed by galvanic corrosion on grain boundary. The expansion of grain boundary corrosion product volume produces the wedging force, makes intergranular corrosion grow along the direction in parallel with the surface, and then gradually evolves into exfoliation corrosion. The degree of recrystallization decreases gradually from the surface to center, and the grain length-to-width radio increases, which inclines to exfoliation corrosion and leads to the exfoliation corrosion grade increasing from surface to center.

Key words7475 aluminum alloy    intergranular corrosion    exfoliation corrosion    recrystallization
收稿日期: 2016-06-13      出版日期: 2017-09-16
中图分类号:  TG146.2+1  
通讯作者: 刘铭     E-mail: mingliu5753@163.com
作者简介: 刘铭(1982-), 女, 博士, 高级工程师, 主要从事高性能航空铝合金及工艺研究, 联系地址:北京市81信箱2分箱(100095), E-mail:mingliu5753@163.com
引用本文:   
刘铭, 李惠曲, 陈军洲, 李国爱, 陈高红. 航空用7475-T7351铝合金厚板耐腐蚀性能[J]. 材料工程, 2017, 45(9): 129-135.
Ming LIU, Hui-qu LI, Jun-zhou CHEN, Guo-ai LI, Gao-hong CHEN. Corrosion Resistance of 7475-T7351 Aluminum Alloy Plate for Aviation. Journal of Materials Engineering, 2017, 45(9): 129-135.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000714      或      http://jme.biam.ac.cn/CN/Y2017/V45/I9/129
Zn Mg Cu Mn Cr Ti Fe Si Al
5.89 2.48 1.59 0.0017 0.22 0.017 0.056 < 0.03 Bal
Table 1  7475-T7351铝合金的化学成分(质量分数/%)
Fig.1  阶梯试样形状示意图
Fig.2  试样涂封实物照片
Fig.3  7475-T7351铝合金晶间腐蚀后的形貌
(a)硝酸出光前的形貌; (b)硝酸出光后的形貌
Fig.4  7475-T7351铝合金晶间腐蚀前后的金相照片
(a)晶间腐蚀前;(b)表面晶间腐蚀后;(c)D/10表面晶间腐蚀后;(d)D/2表面晶间腐蚀后
Sample position Depth of etch pit/mm Average depth of etch pit/mm
Surface(Ⅰ) 0.0825, 0.0655, 0.0685 0.07217
1/10 thickness(Ⅱ) 0.0645, 0.1055, 0.0695 0.07983
Center(Ⅲ) 0.0748, 0.1235, 0.1145 0.10430
Table 2  7475-T7351铝合金不同厚度层腐蚀坑的深度
Time of exfoliation corrosion/h Phenomena of experimentation
1 Generating number of small bubbles
4 Generating numerous bubbles on the surface of samples and white foam on the liquid
6 Bubbles on the surface of samples continued increasing and the surface of samples began to take on the corrosive evidence
10 The surface of sample changed into black, and the point of corrosion changed into deepness
24 Bubbles on the surface of sample became large, and the liquid became clarify
48 The surface of sample became black, and white foam floated on the liquid
Table 3  剥落腐蚀实验现象
Fig.5  7475-T7351铝合金剥落腐蚀后的表面形貌
(a)未去除腐蚀产物; (b)去除腐蚀产物
Face of experiment Exfoliation corrosion grade
EA EA EA
EB EB EA
EB EC EB
Table 4  7475-T7351铝合金剥蚀等级
Fig.6  7475-T7351铝合金透射显微组织
(a)晶粒结构;(b)晶内与晶界析出
Fig.7  7475-T7351板材不同厚度部位金相显微组织
(a)表面(Ⅰ);(b)1/10厚度(Ⅱ);(c)心部(Ⅲ)
Fig.8  7475-T7351板材不同厚度部位晶粒尺寸分析
(a)表面(Ⅰ);(b)1/10厚度(Ⅱ);(c)心部(Ⅲ)
Fig.9  7475-T7351板材不同厚度部位晶粒取向的EBSD分析
(a)表面(Ⅰ); (b)1/10厚度(Ⅱ); (c)心部(Ⅲ)
1 王涛, 尹志民. 高强变形铝合金的研究现状和发展趋势[J]. 稀有金属, 2006, 30 (2): 197- 202.
1 WANG T , YIN Z M . Research status and development trend of ultra-high strength aluminum alloys[J]. Chinese Journal of Rare Metals, 2006, 30 (2): 197- 202.
2 王洪斌, 黄进峰, 杨滨, 等. Al-Zn-Mg-Cu系超高强度铝合金的研究现状与发展趋势[J]. 材料导报, 2003, 17 (9): 1- 4.
2 WANG H B , HUANG J F , YANG B , et al. Current status and future directions of ultrahigh strength Al-Zn-Mg-Cu aluminum alloys[J]. Materials Review, 2003, 17 (9): 1- 4.
3 HEINZ A , HASZLER A , KEIDEL C , et al. Recent development in aluminum alloys for aerospace applications[J]. Materials Science and Engineering:A, 2000, 280, 102- 107.
doi: 10.1016/S0921-5093(99)00674-7
4 ZANG J X , ZHANG K , DAI S L . Precipitation behavior and properties of a new high strength Al-Zn-Mg-Cu alloy[J]. Transactions of Nonferrous Metals Society of China, 2012, 22 (11): 2638- 2644.
doi: 10.1016/S1003-6326(11)61511-2
5 HIRSCH J , KAHAUSEN K F , LOHTE L . Advances in industrial aluminum research and development[J]. Materials Science Forum, 2002, 396/402, 1721- 1730.
doi: 10.4028/www.scientific.net/MSF.396-402
6 NAUGHTAN D M , WORSFOLD M , ROBINSON M J . Corrosion product force measurements in the study of exfoliation and stress corrosion cracking in high strength aluminum alloys[J]. Corrosion Science, 2003, 45 (10): 2377- 2389.
doi: 10.1016/S0010-938X(03)00050-7
7 ROBERT E , SANDERS J R . Technology innovation in aluminum products[J]. JOM:Journal of the Minerals, Metals and Materials Society, 2001, 53 (2): 21- 25.
doi: 10.1007/s11837-001-0115-7
8 WILLIAM C , JOHN L , JAMES S . Aluminum alloys for aircraft structures[J]. Advanced Materials & Processes, 2002, 160 (12): 27- 29.
9 ZUO Y Y , DAO X L , MENG Y , et al. Effects of prior corrosion with and without stress on the mechanical properties of 7475-T761 aluminum alloy[J]. Acta Metallurgica Sinica, 2015, 28 (5): 608- 613.
doi: 10.1007/s40195-015-0238-4
10 WILLIAMS J C , STARKE Jr E A . Progress in structural materials for aerospace systems[J]. Acta Materialia, 2003, 51 (19): 5775- 5799.
doi: 10.1016/j.actamat.2003.08.023
11 RAJESH K G , HRISHIKESH D , TAPAN K P . Influence of processing parameters on induced energy, mechanical and corrosion properties of FSW butt joint of 7475 AA[J]. Journal of Materials Engineering and Performance, 2012, 21 (8): 1645- 1654.
doi: 10.1007/s11665-011-0074-2
12 SOUZA S D , YOSHIKAWA D S , IZALTINO W A S , et al. Nanostructured surface pre-treatment based on self-assembled molecules for corrosion protection of alclad 7475-T761 aluminum alloy[J]. Materials and Corrosion, 2011, 62 (10): 913- 919.
doi: 10.1002/maco.v62.10
13 TSAI T C , CHANG J C , CHUANG T H . Stress corrosion cracking of superplastically formed 7475 aluminum alloy[J]. Metallurgical and Materials Transactions A, 1997, 28 (10): 2113- 2121.
doi: 10.1007/s11661-997-0168-5
14 TSAI T C , CHUANG T H . Role of grain size on the stress corrosion cracking of 7475 aluminum alloys[J]. Materials Science and Engineering:A, 1997, 225 (1/2): 135- 144.
15 KONG D J , WANG J C . Salt spray corrosion and electrochemical corrosion properties of anodic oxide film on 7475 aluminum alloy[J]. Journal of Alloys and Compounds, 2015, 632, 286- 290.
doi: 10.1016/j.jallcom.2015.01.175
16 刘铭, 张坤, 黄敏, 等. 7475-T7351铝合金抗疲劳性能研究[J]. 稀有金属, 2009, 33 (5): 626- 630.
16 LIU M , ZHANG K , HUANG M , et al. Fatigue damage resistance characteristics of 7475-T7351 aluminum alloy[J]. Chinese Journal of Rare Metals, 2009, 33 (5): 626- 630.
17 段水亮. 合金元素和热处理对7475铝合金组织与性能的影响[D]. 长沙: 中南大学, 2008.
17 DUAN S L. The effects of alloying elements and various heat treatments process on mechanical properties and microstructural evolution of 7475 aluminum alloys[D].Changsha:Central South University, 2008.
18 程勇胜, 郑子樵, 李秋菊. 时效制度对7475铝合金组织与性能的影响[J]. 轻合金加工技术, 2001, 29 (6): 40- 44.
18 CHENG Y S , ZHENG Z Q , LI Q J . Effects of ageing on microstructure and properties of 7475 aluminium alloy[J]. Light Alloy Fabrication Technology, 2001, 29 (6): 40- 44.
19 李海宏, 刘振伟, 董超芳. 7475铝合金薄壁管时效工艺及应力腐蚀性能研究[J]. 轻合金加工技术, 2013, 41 (3): 54- 56.
19 LI H H , LIU Z W , DONG C F . Study on aging technology and stress corrosion of 7475 aluminum alloy with thin-wall tube[J]. Light Alloy Fabrication Technology, 2013, 41 (3): 54- 56.
20 SINYAVSKⅡ V S , UIANOVA V V , KALINLIN V D . On the mechanism of intergranular corrosion of aluminum alloys[J]. Protection of Metals, 2004, 40 (5): 481- 490.
doi: 10.1023/B:PROM.0000043067.38199.95
21 RAMGOPAL T , GOUMA P I , FRANKEL G S . Role of grain-boundary precipitates and solute-depleted zone on the intergranular corrosion of aluminum alloy 7150[J]. Corrosion, 2002, 58 (8): 687- 697.
doi: 10.5006/1.3287699
22 何正林, 高文理, 陆政, 等. 热处理对7A85铝合金组织和性能的影响[J]. 材料工程, 2015, 43 (8): 13- 18.
doi: 10.11868/j.issn.1001-4381.2015.08.003
22 HE Z L , GAO W L , LU Z , et al. Effects of heat treatment on microstructure and properties of 7A85 aluminium alloy[J]. Journal of Materials Engineering, 2015, 43 (8): 13- 18.
doi: 10.11868/j.issn.1001-4381.2015.08.003
23 VALIEV R Z , MURASHKIN Y M , SABIROV I . A nanostructural design to produce high-strength Al alloys with enhanced electrical conductivity[J]. Scripta Materialia, 2014, 76, 13- 16.
doi: 10.1016/j.scriptamat.2013.12.002
24 ROBINSON M J , JACKSON N C . Exfoliation corrosion of high strength Al-Cu-Mg alloys:effect of grain structure[J]. British Corrosion Journal, 2014, 34 (1): 45- 49.
25 KELLY D J , ROBINSON M J . Influence of heat treatment and grain shape on exfoliation corrosion of Al-Li alloy 8090[J]. Corrosion, 1993, 49 (10): 787- 795.
doi: 10.5006/1.3316001
26 赵凤, 鲁法云, 郭富安. 两种7050铝合金厚板的组织与性能[J]. 航空材料学报, 2015, 35 (2): 64- 71.
doi: 10.11868/j.issn.1005-5053.2015.2.008
26 ZHAO F , LU F Y , GUO F A . Comparative analysis of microstructures and properties of two kinds of thick plates of 7050-T7451 aluminum alloy[J]. Journal of Aeronautical Materials, 2015, 35 (2): 64- 71.
doi: 10.11868/j.issn.1005-5053.2015.2.008
27 宁爱林, 刘志义, 郑青春, 等. 分级固溶对7A04铝合金组织与性能的影响[J]. 中国有色金属学报, 2004, 14 (7): 1211- 1216.
27 NING A L , LIU Z Y , ZHENG Q C , et al. Effects of progressive solution treatment on microstructure and mechanical properties of 7A04 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2004, 14 (7): 1211- 1216.
[1] 高杰明, 黄晖, 石薇, 魏午, 文胜平, 韩颖, 聂祚仁. 退火处理对含铒Al-Mg-Zn合金组织和性能的影响[J]. 材料工程, 2022, 50(11): 101-108.
[2] 于娟, 陆政, 鲁原, 熊艳才, 李国爱, 冯朝辉, 郝时嘉. 中间形变热处理对2A97铝锂合金组织和性能的影响[J]. 材料工程, 2021, 49(5): 130-136.
[3] 乔士宾, 何西扣, 刘敬杰, 赵德利, 刘正东. SA508Gr.4N钢热变形过程微观组织演变及流变应力模型[J]. 材料工程, 2021, 49(3): 67-77.
[4] 杨璐, 曹敏, 曹玲飞, 廖斌, 王正安. 7B04包铝复合板热变形行为及其对组织演变的影响[J]. 材料工程, 2021, 49(3): 78-86.
[5] 张连腾, 陈乐平, 徐勇, 袁源平. Mg-9Al-3Si-0.375Sr-0.78Y合金的热变形行为及本构模型[J]. 材料工程, 2021, 49(2): 88-96.
[6] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[7] 朱鸿昌, 罗军明, 朱知寿. TB17钛合金β相区动态再结晶行为及转变机理[J]. 材料工程, 2020, 48(2): 108-113.
[8] 甘洪岩, 程明, 宋鸿武, 陈岩, 张士宏, VladimirPetrenko. GH4169合金楔横轧加工过程中动态再结晶及织构演变[J]. 材料工程, 2020, 48(2): 114-122.
[9] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[10] 涂蕴超, 何承绪, 孟利, 陈冷. 退火工艺参数及母材性能对取向硅钢超薄带磁性能的影响[J]. 材料工程, 2020, 48(1): 61-69.
[11] 储双杰, 沈侃毅, 沙玉辉, 陈曦. 无取向硅钢形变储能取向依赖性及其对再结晶织构的影响[J]. 材料工程, 2019, 47(8): 147-153.
[12] 韩梅, 谢洪吉, 李嘉荣, 董建民, 岳晓岱, 喻健, 杨亮. 再结晶对DD6单晶高温合金轴向高周疲劳性能的影响[J]. 材料工程, 2019, 47(6): 161-168.
[13] 史振学, 刘世忠, 赵金乾, 王效光, 李嘉荣. 基于不同原始组织预设变形第四代单晶高温合金的再结晶行为[J]. 材料工程, 2019, 47(5): 107-114.
[14] 黄利, 黄光杰, 吴晓东, 曹玲飞, 李佳. 预处理工艺对双辊铸轧3003铝合金再结晶行为的影响[J]. 材料工程, 2019, 47(4): 135-142.
[15] 赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙. 石墨烯纳米片增强铝基复合材料的动态力学行为[J]. 材料工程, 2019, 47(3): 23-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn