Please wait a minute...
 
2222材料工程  2017, Vol. 45 Issue (9): 31-37    DOI: 10.11868/j.issn.1001-4381.2016.000251
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
石墨烯/聚酰亚胺复合石墨纤维的结构与性能
李娜, 马兆昆(), 陈铭, 宋怀河, 李昂, 贾月荣
北京化工大学 材料科学与工程学院 化工资源有效利用国家重点实验室, 北京 100029
Structures and Performance of Graphene/Polyimide Composite Graphite Fibers
Na LI, Zhao-kun MA(), Ming CHEN, Huai-he SONG, Ang LI, Yue-rong JIA
State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
全文: PDF(3519 KB)   HTML ( 23 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用干湿法纺丝工艺制备氧化石墨烯/聚酰亚胺复合纤维,然后将复合纤维进行炭化和石墨化处理得到石墨烯/聚酰亚胺复合碳纤维及石墨纤维。对复合碳纤维进行热重分析、Raman、力学性能、传导性能、形貌等测试分析。结果表明,氧化石墨烯添加量为0.3%(质量分数,下同)的复合纤维的耐热性能最佳;氧化石墨烯的加入,使石墨烯/聚酰亚胺复合碳纤维的力学性能和传导性能明显提高,石墨化程度增加。当复合碳纤维2800℃石墨化后,氧化石墨烯含量增加到2.0%时,复合石墨纤维的热导率达到435.57 W·m-1·K-1,结构更加致密。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李娜
马兆昆
陈铭
宋怀河
李昂
贾月荣
关键词 石墨烯/聚酰亚胺复合石墨纤维热稳定性力学性能传导性能    
Abstract

Dry-wet spinning process was used to gain graphene oxide/polyimide composite fibers, then graphene/polyimide composite carbon and graphite fibers were obtained through carbonized and graphitized. Different graphene oxide contents of the composite carbon and graphite fibers were measured by thermal gravimetric analysis, Raman, mechanical properties, electrical properties, SEM and so on. The results show that when the GO content is 0.3%(mass fraction, the same below), the thermal property of the graphene oxide/polyimide composite fibers is the best. The mechanical and electrical properties are obriously improved by the addition of GO, graphitization degree also increases. When the composite carbon fibers are treated at 2800℃, GO content increases to 2.0%, the thermal conductivity of the composite graphite fibers reaches 435.57W·m-1·K-1 and cross-section structures of carbon fibers are more compact.

Key wordsGO/PI composite graphite fiber    thermal stability    mechanical property    conductivity property
收稿日期: 2015-09-10      出版日期: 2017-09-16
中图分类号:  TQ342+.74  
基金资助:国家重点基础研究发展计划项目(2011CB013403)
通讯作者: 马兆昆     E-mail: mazk@mail.buct.edu.cn
作者简介: 马兆昆(1976-), 男, 博士, 副教授, 主要从事高导热碳材料的研制和应用研究, 联系地址:北京市北三环东路15号34信箱(100029), E-mail:mazk@mail.buct.edu.cn
引用本文:   
李娜, 马兆昆, 陈铭, 宋怀河, 李昂, 贾月荣. 石墨烯/聚酰亚胺复合石墨纤维的结构与性能[J]. 材料工程, 2017, 45(9): 31-37.
Na LI, Zhao-kun MA, Ming CHEN, Huai-he SONG, Ang LI, Yue-rong JIA. Structures and Performance of Graphene/Polyimide Composite Graphite Fibers. Journal of Materials Engineering, 2017, 45(9): 31-37.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000251      或      http://jme.biam.ac.cn/CN/Y2017/V45/I9/31
Fig.1  PAA纤维(a)、PI纤维(b)和不同GO含量的GO/PI复合纤维(c)
(GO/PI纤维从左到右GO含量依次为0%,0.3%,0.5%,1.0%,2.0%)
Fig.2  PI纤维和0.3%GO/PI复合纤维的红外图谱
Fig.3  1000℃炭化的不同GO含量的GO/PI复合纤维的拉曼光谱
Fig.4  2800℃石墨化的不同GO含量的GO/PI复合石墨纤维的拉曼光谱
HTT/℃SampleRaman shift/cm-1
D band/cm-1G band/cm-1ID/IG
1000PI-0.0134915971.84
PI-0.3134915921.71
PI-0.5136415841.69
PI-1.0135116001.65
PI-2.0134915981.60
2800PI-0.0133315811.23
PI-0.3133115851.18
PI-0.5133115881.06
Table 1  不同GO含量复合碳纤维的拉曼分析
Fig.5  1000℃炭化的复合碳纤维的截面形貌
(a)0%GO; (b)0.3%GO; (c)1.0%GO
Fig.6  2800℃处理后的复合石墨纤维的截面形貌
(a)0%GO; (b)0.3%GO; (c)1.0%GO
Fig.7  不同GO含量的复合纤维的TG曲线
SampleTd5/℃Td10/℃Tonset/℃Tmax/℃
PI-0.0240464522.4595.2
PI-0.3341484528.3600.7
PI-0.5292464510.4583.9
PI-1.0244467523.6593.9
PI-2.0208432506.3607.2
Table 2  不同GO含量复合纤维的热重分析
Fig.8  1000℃炭化后的石墨烯/聚酰亚胺复合碳纤维的电阻率和热导率
Fig.9  2800℃热处理后石墨烯/聚酰亚胺复合石墨纤维的电阻率和热导率
Fig.10  GO/PI复合碳纤维的力学性能随GO含量的变化
1 丁孟贤. 聚酰亚胺-化学、结构与性能的关系及材料[M]. 北京: 科学出版社, 2006: 1- 5.
1 DING M X . Polyimide:chemistry, relationship between structure and properties and materials[M]. Beijing: Science Press, 2006: 1- 5.
2 朱璇, 钱明球, 虞鑫海, 等. 聚酰亚胺及其纤维的研究与开发进展(1)[J]. 合成技术及应用, 2013, 28 (2): 24- 29.
2 ZHU X , QIAN M Q , YU X H , et al. The research and development progress in polyimides and its fiber (1)[J]. Synthetic Technology and Application, 2013, 28 (2): 24- 29.
3 张清华, 陈大俊, 丁孟贤. 聚酰亚胺纤维[J]. 高分子通报, 2001, (5): 66- 72.
3 ZHANG Q H , CHEN D J , DING M X . Polyimide fibers[J]. Polymer Bulletin, 2001, (5): 66- 72.
4 张清华, 张春华, 陈大俊, 等. 高性能聚酰亚胺纤维研究进展[J]. 高科技纤维与应用, 2002, 27 (5): 11- 14.
4 ZHANG Q H , ZHANG C H , CHEN D J , et al. Advances in high performance polyimide fibers[J]. Hi-tech Fiber and Application, 2002, 27 (5): 11- 14.
5 汪家铭. 聚酰亚胺纤维生产现状与市场前景(上)[J]. 上海化工, 2013, 38 (2): 37- 40.
5 WANG J M . Production status and market prospect of polyimide fibers (Ⅰ)[J]. Shanghai Chemical Industry, 2013, 38 (2): 37- 40.
6 张春玲, 邱雪鹏, 薛彦虎, 等. 牵伸倍率对联苯型聚酰亚胺纤维形貌、取向及性能的影响[J]. 高等化学学报, 2011, 32 (4): 952- 956.
6 ZHANG C L , QIU X P , XUE Y H , et al. Effect of draw ratio on the morphology, orientation and properties of biphenyl-type polyimide fibers[J]. Chem J Chinese Universities, 2011, 32 (4): 952- 956.
7 PARK S K , FARRIS R J . Dry-jet wet spinning of aromatic polyamic acid fiber using chemical imidization[J]. Polymer, 2001, 42 (26): 10087- 10093.
doi: 10.1016/S0032-3861(01)00576-6
8 NEUBER C , SCHMIDT H W , GIESA R . Polyimide fibers obtained by spinning lyotropic solutions of rigid-rod aromatic poly(amic ethyl ester)s[J]. Macromolecular Materials & Engineering, 2006, 291 (11): 1315- 1326.
9 ZHANG Q H , DAI M , DING M X , et al. Mechanical properties of BPDA-ODA polyimide fibers[J]. European Polymer Journal, 2004, 40 (11): 2487- 2493.
doi: 10.1016/j.eurpolymj.2004.06.020
10 巩娜娟. 氧化石墨烯对聚丙烯腈纺丝及其向碳纤维结构转化的影响[D]. 上海: 东华大学, 2013.
10 GONG N J.The effect of graphene oxide on the spinning of polyacrylonitrile and its transformation to carbon fiber[D].Shanghai:Donghua University, 2013.
11 牛永安. 石墨烯/聚酰亚胺复合薄膜的制备及诱导石墨化研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.
11 NIU Y A.Preparation and induced graphitization of graphene/ployimide composite[D].Harbin:Harbin Institute of Technology, 2013.
12 李昂, 马兆昆, 宋怀河, 等. 热处理温度对聚酰亚胺基炭纤维结构性能影响[J]. 新型炭材料, 2014, 29 (6): 461- 466.
12 LI A , MA Z K , SONG H H , et al. The effect of heat treatment temperature on microstructures and the properties of polyimide-based carbon fibers[J]. New Carbon Materials, 2014, 29 (6): 461- 466.
13 CHEN M , YIN J , JIN R , et al. Dielectric and mechanical properties and thermal stability of polyimide-graphene oxide composite films[J]. Thin Solid Films, 2015, 584, 232- 237.
doi: 10.1016/j.tsf.2015.01.005
14 CAO L , SUN Q , WANG H , et al. Enhanced stress transfer and thermal properties of polyimide composites with covalent functionalized reduced graphene oxide[J]. Composites Part A Applied Science & Manufacturing, 2015, 68, 140- 148.
15 HA H W , CHOUDHURY A , KAMAL T , et al. Effect of chemical modification of graphene on mechanical, electrical, and thermal properties of polyimide/graphene nanocomposites[J]. Acs Applied Materials & Interfaces, 2012, 4 (9): 4623.
16 HUANG T , LU R , SU C , et al. Chemically modified graphene/polyimide composite films based on utilization of covalent bonding and oriented distribution[J]. ACS Appl Mater Interfaces, 2012, 4 (5): 2699- 2708.
doi: 10.1021/am3003439
17 QIAN Y , LAN Y , XU J , et al. Fabrication of polyimide-based nanocomposites containing functionalized graphene oxide nanosheets by in-situ, polymerization and their properties[J]. Applied Surface Science, 2014, 314 (10): 991- 999.
18 DONG J , YIN C , ZHAO X , et al. High strength polyimide fibers with functionalized graphene[J]. Polymer, 2013, 54 (23): 6415- 6424.
doi: 10.1016/j.polymer.2013.09.035
19 郭鹏. 石墨烯的制备、组装及应用研究[D]. 北京: 北京化工大学, 2010.
19 GUO P.Preparation, assembly and application of graphene[D].Beijing:Beijing University of Chemical Technology, 2010.
20 ZHANG X , FUJIWARA S , FUJⅡU M . Measurements of thermal conductivity and electrical conductivity of a single carbon fiber[J]. International Journal of Thermophysics, 2000, 21 (4): 965- 980.
doi: 10.1023/A:1006674510648
21 贺福. 用拉曼光谱研究碳纤维的结构[J]. 高科技纤维与应用, 2005, 30 (6): 20- 25.
21 HE F . Raman spectroscopy studies on structure of carbon fibres[J]. Hi-tech Fiber and Application, 2005, 30 (6): 22- 25.
22 赵根祥, 贾世军, 钱树安. PI膜转变为炭膜过程中的结构变化[J]. 炭素技术, 1997, 91 (5): 12- 17.
22 ZHAO G X , JIA S J , QIAN S A . Studies of the structural changed during the conversion of PI film to carbon film[J]. Carbon Techniques, 1997, 91 (5): 12- 17.
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[3] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[4] 李守佳, 罗春燕, 陈卫星, 方铭港, 孙健鑫. 氧化石墨烯接枝聚乙二醇对左旋聚乳酸结晶行为和热稳定性的影响[J]. 材料工程, 2022, 50(8): 99-106.
[5] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[6] 倪洪江, 邢宇, 戴霄翔, 李军, 张代军, 陈祥宝. 航空发动机用聚酰亚胺树脂基复合材料固化工艺及热稳定性能[J]. 材料工程, 2022, 50(7): 102-109.
[7] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[8] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[9] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[10] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[11] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[12] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[13] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[14] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[15] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn