Fabrication and Process Optimization of Super-wettability Metal Mesh
Hong-xia CHEN1,2,*(), Fu-min MA3, Lin-bin HUANG1
1 School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China 2 Beijing Key Laboratory of Multiphase Flow and Heat Transfer, North China Electric Power University, Beijing 102206, China 3 College of Material and Metallurgy, Hubei Polytechnic University, Huangshi 435003, Hubei, China
Super-wettability Cu mesh(200PPI) was successfully fabricated by direct oxidation, liquid deposition and vapor deposition in order to expand its application ranges and enhance microstructure effect. The structure, morphology and wettability of Cu mesh were characterized by scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction, contact angle instrument and high speed video, and the optimum preparation process of film layer was obtained. The copper mesh with a layer of knife-like flower film shows super-hydrophilic wettability on which the spread velocity of water is 3.5m/s; moreover, the super-hydrophilic mesh with hybrid structures can be switched into super-hydrophobic material (>150°) by liquid deposition and vapor deposition methods; the optimum fabrication conditions to achieve super-hydrophobic performance >150° are oxidation time of 15min, oxidation temperature of 96℃, liquid deposition time of 30min and the treat temperature of 180℃ for 20min. Meantime, hybrid gaps of knife-like flowers are considered as the main reason of the super-wettability of meshes.
JIANG L , HUANG Y , TANG Y , et al. Fabrication and thermal performance of porous crack composite wick flattened heat pipe[J]. Applied Thermal Engineering, 2014, 66 (1/2): 140- 147.
2
CHERNYSHEVA M A , MAYDANIK Y F . Peculiarities of heat transfer in a flat disk-shaped evaporator of a loop heat pipe[J]. International Journal of Heat and Mass Transfer, 2016, 92, 1026- 1033.
doi: 10.1016/j.ijheatmasstransfer.2015.08.108
3
XU J L , JI X B . Modulated porous wick evaporator for loop heat pipes:experiment[J]. International Journal of Heat and Mass Transfer, 2014, 72, 163- 176.
doi: 10.1016/j.ijheatmasstransfer.2014.01.005
4
LI H , WANG X , LIU Z , et al. Experimental investigation on the sintered wick of the anti-gravity loop-shaped heat pipe[J]. Experimental Thermal and Fluid Science, 2015, 68, 689- 696.
doi: 10.1016/j.expthermflusci.2015.06.020
5
JIANG L L , LING J T , JIANG L Z , et al. Thermal performance of a novel porous crack composite wick heat pipe[J]. Energy Conversion and Management, 2014, 81, 10- 18.
doi: 10.1016/j.enconman.2014.01.044
6
KIM K M , BANG I C . Effects of graphene oxide nanofluids on heat pipe performance and capillary limits[J]. International Journal of Thermal Sciences, 2016, 100, 346- 356.
doi: 10.1016/j.ijthermalsci.2015.10.015
7
CHEN H X , XU J L , XING F , et al. Stratified two-phase flow pattern modulation in a horizontal tube by the mesh pore cylinder surface[J]. Applied Energy, 2013, 112, 1283- 1290.
doi: 10.1016/j.apenergy.2012.11.062
8
CHEN H X , XU J L , XING F , et al. Flow pattern modulation in a horizontal tube by the passive phase separation concept[J]. International Journal of Multiphase Flow, 2012, 45, 12- 23.
doi: 10.1016/j.ijmultiphaseflow.2012.04.003
9
O'HANLEY H , COYLE C , BUONGIORNO J , et al. Separate effects of surface roughness, wettability, and porosity on the boiling critical heat flux[J]. Applied Physics Letters, 2013, 103 (2): 024102- 024402.
doi: 10.1063/1.4813450
10
CAO Y , ZHANG Z , TAO L , et al. Mussel-inspired chemistry and Michael addition reaction for efficient oil/water separation[J]. ACS Applied Materials Interfaces, 2013, (5): 4438- 4442.
11
LA D D , NGUYEN T A , LEE S , et al. A stable superhydrophobic and superoleophilic Cu mesh based on copper hydroxide nanoneedle arrays[J]. Applied Surface Science, 2011, 257 (13): 5705- 5710.
doi: 10.1016/j.apsusc.2011.01.078
12
SONG W , XIA F , BAI Y , et al. Controllable water permeationon a poly (N-isopropylacrylamide)-modified nanostructured copper mesh film[J]. Langmuir, 2006, 23 (1): 327- 331.
SU X Z , YU Z J , XU P , et al. Experimental research of oil/water separator with super-hydrophobic films[J]. Journal of Chemical Engineering of Chinese Universities, 2013, 5 (27): 910- 914.
LU Q F , YU Z J , SUN X Z . Experimental research of oil/water separator with super-hydrophobic films[J]. Liaoning Chemical Industry, 2012, 8 (41): 751- 754.
QIAN S W , WU W J , WANG J F , et al. Research advance of bioinspired superhydrophobic surface[J]. Journal of Materials Engineering, 2006, (1): 482- 488.
16
YU C S , AHMAD B A , ALADDHAL M , et al. Properties of super-hydrophobic copper and stainless steel meshes:applications in controllable water permeation and organic solvents/water separation[J]. Applied Surface Science, 2015, 335, 107- 114.
doi: 10.1016/j.apsusc.2015.02.034