Please wait a minute...
 
2222材料工程  2017, Vol. 45 Issue (9): 59-65    DOI: 10.11868/j.issn.1001-4381.2016.000009
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
超浸润性金属丝网的制备及工艺优化
陈宏霞1,2,*(), 马福民3, 黄林滨1
1 华北电力大学 能源与动力工程学院, 北京 102206
2 华北电力大学 多相流与传热北京市重点实验室, 北京 102206
3 湖北理工学院 材料与冶金学院, 湖北 黄石 435003
Fabrication and Process Optimization of Super-wettability Metal Mesh
Hong-xia CHEN1,2,*(), Fu-min MA3, Lin-bin HUANG1
1 School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
2 Beijing Key Laboratory of Multiphase Flow and Heat Transfer, North China Electric Power University, Beijing 102206, China
3 College of Material and Metallurgy, Hubei Polytechnic University, Huangshi 435003, Hubei, China
全文: PDF(3389 KB)   HTML ( 10 )  
输出: BibTeX | EndNote (RIS)      
摘要 

为拓展三维丝网的应用,强化其微结构作用效果;通过采用直接氧化法和液相、气相沉积成功制备超浸润性Cu丝网(200PPI)。利用扫描电镜、透射电镜、X射线衍射、接触角仪及高速摄像分别对丝网的结构、形貌及浸润性进行表征,并获得膜层的最佳制备工艺。结果表明:曲面丝线上的超亲水膜层呈现为单层微米尺度的刀片花结构,液滴在此表面上的铺展速率可达3.5m/s;经液相、气相沉积方法对其氟化处理后,超亲水丝网成功改性为超疏水丝网;并证明试样在96℃氧化液中氧化15min、液相沉积30min、180℃下热处理20min可获得大于150°的超疏水性能。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈宏霞
马福民
黄林滨
关键词 金属丝网超亲水性超疏水性刀片花    
Abstract

Super-wettability Cu mesh(200PPI) was successfully fabricated by direct oxidation, liquid deposition and vapor deposition in order to expand its application ranges and enhance microstructure effect. The structure, morphology and wettability of Cu mesh were characterized by scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction, contact angle instrument and high speed video, and the optimum preparation process of film layer was obtained. The copper mesh with a layer of knife-like flower film shows super-hydrophilic wettability on which the spread velocity of water is 3.5m/s; moreover, the super-hydrophilic mesh with hybrid structures can be switched into super-hydrophobic material (>150°) by liquid deposition and vapor deposition methods; the optimum fabrication conditions to achieve super-hydrophobic performance >150° are oxidation time of 15min, oxidation temperature of 96℃, liquid deposition time of 30min and the treat temperature of 180℃ for 20min. Meantime, hybrid gaps of knife-like flowers are considered as the main reason of the super-wettability of meshes.

Key wordsmetal mesh    super-hydrophilicity    super-hydrophobicity    knife-like flower
收稿日期: 2016-01-04      出版日期: 2017-09-16
中图分类号:  TB32  
基金资助:国家自然科学基金资助(51576063);国家自然科学基金资助(51202082);中央高校基本科研业务费专项资金资助(2017YQ002)
通讯作者: 陈宏霞     E-mail: hxchen@ncepu.edu.cn
作者简介: 陈宏霞(1980-), 女, 博士, 副教授, 主要从事强化传热与节能以及新型复杂材料的应用, 联系地址:北京昌平回龙观北农路2号华北电力大学(102206), E-mail:hxchen@ncepu.edu.cn
引用本文:   
陈宏霞, 马福民, 黄林滨. 超浸润性金属丝网的制备及工艺优化[J]. 材料工程, 2017, 45(9): 59-65.
Hong-xia CHEN, Fu-min MA, Lin-bin HUANG. Fabrication and Process Optimization of Super-wettability Metal Mesh. Journal of Materials Engineering, 2017, 45(9): 59-65.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000009      或      http://jme.biam.ac.cn/CN/Y2017/V45/I9/59
Fig.1  超亲水丝网改性前后形貌图
(a)空白试样; (b)亲水丝网; (c)膜层; (d)氧化产物透射电镜图
Fig.2  液体在亲水性铜网表面铺展过程
Fig.3  超疏水丝网SEM图
(a)气相沉积;(b)液相沉积
Fig.4  液滴在金属丝网表面的轮廓线图
Fig.5  液滴在疏水铜网表面的弹跳与脱离动态过程图
Fig.6  疏水处理的键合反应
Fig.7  操作条件对丝网疏水性能的影响规律图
(a)不同沉积时间;(b)不同氧化时间
Fig.8  不同液相沉积时间制备疏水膜层的SEM图(氧化时间15min)
(a) 30min; (b) 60min; (c) 90min
Fig.9  不同氧化时间制备疏水膜层的SEM图(液相沉积30min)
(a) 25min; (b) 40min; (c) 50min
1 JIANG L , HUANG Y , TANG Y , et al. Fabrication and thermal performance of porous crack composite wick flattened heat pipe[J]. Applied Thermal Engineering, 2014, 66 (1/2): 140- 147.
2 CHERNYSHEVA M A , MAYDANIK Y F . Peculiarities of heat transfer in a flat disk-shaped evaporator of a loop heat pipe[J]. International Journal of Heat and Mass Transfer, 2016, 92, 1026- 1033.
doi: 10.1016/j.ijheatmasstransfer.2015.08.108
3 XU J L , JI X B . Modulated porous wick evaporator for loop heat pipes:experiment[J]. International Journal of Heat and Mass Transfer, 2014, 72, 163- 176.
doi: 10.1016/j.ijheatmasstransfer.2014.01.005
4 LI H , WANG X , LIU Z , et al. Experimental investigation on the sintered wick of the anti-gravity loop-shaped heat pipe[J]. Experimental Thermal and Fluid Science, 2015, 68, 689- 696.
doi: 10.1016/j.expthermflusci.2015.06.020
5 JIANG L L , LING J T , JIANG L Z , et al. Thermal performance of a novel porous crack composite wick heat pipe[J]. Energy Conversion and Management, 2014, 81, 10- 18.
doi: 10.1016/j.enconman.2014.01.044
6 KIM K M , BANG I C . Effects of graphene oxide nanofluids on heat pipe performance and capillary limits[J]. International Journal of Thermal Sciences, 2016, 100, 346- 356.
doi: 10.1016/j.ijthermalsci.2015.10.015
7 CHEN H X , XU J L , XING F , et al. Stratified two-phase flow pattern modulation in a horizontal tube by the mesh pore cylinder surface[J]. Applied Energy, 2013, 112, 1283- 1290.
doi: 10.1016/j.apenergy.2012.11.062
8 CHEN H X , XU J L , XING F , et al. Flow pattern modulation in a horizontal tube by the passive phase separation concept[J]. International Journal of Multiphase Flow, 2012, 45, 12- 23.
doi: 10.1016/j.ijmultiphaseflow.2012.04.003
9 O'HANLEY H , COYLE C , BUONGIORNO J , et al. Separate effects of surface roughness, wettability, and porosity on the boiling critical heat flux[J]. Applied Physics Letters, 2013, 103 (2): 024102- 024402.
doi: 10.1063/1.4813450
10 CAO Y , ZHANG Z , TAO L , et al. Mussel-inspired chemistry and Michael addition reaction for efficient oil/water separation[J]. ACS Applied Materials Interfaces, 2013, (5): 4438- 4442.
11 LA D D , NGUYEN T A , LEE S , et al. A stable superhydrophobic and superoleophilic Cu mesh based on copper hydroxide nanoneedle arrays[J]. Applied Surface Science, 2011, 257 (13): 5705- 5710.
doi: 10.1016/j.apsusc.2011.01.078
12 SONG W , XIA F , BAI Y , et al. Controllable water permeationon a poly (N-isopropylacrylamide)-modified nanostructured copper mesh film[J]. Langmuir, 2006, 23 (1): 327- 331.
13 孙晓哲, 于志家, 徐鹏, 等. 油水乳化液在疏水复合涂层网膜上破乳分离的实验研究[J]. 高校化学工程学报, 2013, 5 (27): 910- 914.
13 SU X Z , YU Z J , XU P , et al. Experimental research of oil/water separator with super-hydrophobic films[J]. Journal of Chemical Engineering of Chinese Universities, 2013, 5 (27): 910- 914.
14 陆启富, 于志家, 孙晓哲. 超疏水膜油水分离器的设计与实验[J]. 辽宁化工, 2012, 8 (41): 751- 754.
14 LU Q F , YU Z J , SUN X Z . Experimental research of oil/water separator with super-hydrophobic films[J]. Liaoning Chemical Industry, 2012, 8 (41): 751- 754.
15 钱斯文, 吴文健, 王建方, 等. 仿生超疏水表面研究进展[J]. 材料工程, 2006, (1): 482- 488.
15 QIAN S W , WU W J , WANG J F , et al. Research advance of bioinspired superhydrophobic surface[J]. Journal of Materials Engineering, 2006, (1): 482- 488.
16 YU C S , AHMAD B A , ALADDHAL M , et al. Properties of super-hydrophobic copper and stainless steel meshes:applications in controllable water permeation and organic solvents/water separation[J]. Applied Surface Science, 2015, 335, 107- 114.
doi: 10.1016/j.apsusc.2015.02.034
[1] 李晴, 钱付平, 董伟, 韩云龙, 鲁进利. 硅烷偶联剂KH570改性TiO2超疏水滤料的制备与性能[J]. 材料工程, 2022, 50(2): 144-152.
[2] 刘朋博, 王嘉骏, 冯连芳, 顾雪萍. 润湿性可切换的表面[J]. 材料工程, 2016, 44(12): 118-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn