Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (1): 106-113    DOI: 10.11868/j.issn.1001-4381.2016.001099
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
锂离子电池正极材料铁掺杂V6O13的制备及电化学性能
袁琦, 邹正光, 万振东, 韩世昌
桂林理工大学 材料科学与工程学院 有色金属及材料加工新技术教育部重点实验室, 广西 桂林 541004
Synthesis and Electrochemical Properties of Fe-doped V6O13 as Cathode Material for Lithium-ion Battery
YUAN Qi, ZOU Zheng-guang, WAN Zhen-dong, HAN Shi-chang
Key Laboratory of Non-ferrous Materials and New-Processing Technology(Ministry of Education), College of Material Science and Engineering, Guilin University of Technology, Guilin 541004, Guangxi, China
全文: PDF(5681 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 为有效提高V6O13正极材料在高锂状态下的放电比容量和改善循环性能,使用一种先制备前驱体再水热合成的方法制备铁掺杂V6O13。运用XRD,SEM和XPS表征铁掺杂V6O13的物相、形貌以及表面元素价态,并对铁掺杂V6O13的电化学性能进行研究与分析。掺杂不同数量的铁可以得到不同形貌且电化学性能各异的铁掺杂V6O13。其中0.02样品的有序堆垛纳米片的厚度最大(600~900nm),纳米片之间的空隙最大。铁掺杂V6O13样品的放电性能均好于纯V6O13,其中0.02样品的电化学性能最好,首次放电比容量为433mAh·g-1,100次循环后的容量保存率为47.1%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
袁琦
邹正光
万振东
韩世昌
关键词 锂离子电池V6O13铁掺杂电化学性能    
Abstract:Fe-doped V6O13 was synthesized via a facile hydrothermal method after preparing precursor in order to improve the discharge capacity and cycle performance of V6O13 cathode material at high-lithium state. XRD, SEM and XPS were employed to characterize the phase, morphology and valence of the Fe-doped V6O13. Meanwhile, the electrochemical performance was analyzed and researched. Different morphologies and electrochemical performances of Fe-doped V6O13 were obtained via doping different contents of Fe3+ ion. The sample 0.02 presented the largest thickness of nanosheets (the thickness of 600-900nm) and clearance between layers. The Fe-doped V6O13 has a better electrochemical performance than that of pure V6O13. The sample 0.02 exhibits the best electrochemical performance, the initial discharge specific capacity is 433mAh·g-1 and the capacity retention is 47.1% after 100 cycles.
Key wordslithium-ion battery    V6O13    Fe-doped    electrochemical property
收稿日期: 2016-09-12      出版日期: 2018-01-18
中图分类号:  TM911  
通讯作者: 邹正光(1962-),男,教授,博士生导师,研究方向为锂离子电池正极材料,联系地址:广西壮族自治区桂林市建干路12号桂林理工大学材料科学与工程学院(541004),E-mail:zouzgglut@163.com     E-mail: zouzgglut@163.com
引用本文:   
袁琦, 邹正光, 万振东, 韩世昌. 锂离子电池正极材料铁掺杂V6O13的制备及电化学性能[J]. 材料工程, 2018, 46(1): 106-113.
YUAN Qi, ZOU Zheng-guang, WAN Zhen-dong, HAN Shi-chang. Synthesis and Electrochemical Properties of Fe-doped V6O13 as Cathode Material for Lithium-ion Battery. Journal of Materials Engineering, 2018, 46(1): 106-113.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001099      或      http://jme.biam.ac.cn/CN/Y2018/V46/I1/106
[1] 张晓清,赵智敏. 基于清洁发展机制的能源可持续发展影响分析[J]. 煤炭技术,2010,29(9):9-10. ZHANG X Q, ZHAO Z M. Analysis of influence of energy for sustainable development based on clean development mechanism[J]. Coal Technology, 2010, 29(9):9-10.
[2] 万婷,穆道斌,薛欢,等. 锂离子电池锡基负极材料的研究进展[J]. 材料导报,2010,24(9):117-120. WAN T, MU D B, XUE H, et al. Research progress in tin-based negative electrode materials for Li-ion batteries[J]. Materials Review, 2010, 24(9):117-120.
[3] 杜萍,高俊奎. 锂离子电池Si基负极研究进展[J]. 电源技术,2010,4(34):409-412. DU P, GAO J K. Research progress of Si based anode material for Li-ion battery[J]. Chinese Journal of Power Sources, 2010, 4(34):409-412.
[4] 吴宇平,戴晓兵,马军旗,等. 锂离子电池:应用与实践[M]. 北京:化学工业出版社,2004. WU Y P, DAI X B, MA J Q, et al. Lithium-ion batteries:application and practice[M]. Beijing:Chemical Industry Press, 2004.
[5] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861):359-367.
[6] ATIL A, PATIL V, SHIN W V, et al. Issue and challenges facing rechargeable thin film lithium batteries[J]. Materials Research Bulletin, 2008, 43(8):1913-1942.
[7] LIU H K, WANG G X, GUO Z, et al. Nanomaterials for lithium-ion rechargeable batteries[J]. Journal of Nanoscience and Nanotechnology, 2006, 6(1):1-15.
[8] MANTHIRAM A, MURUGAN A V, SARKAR A, et al. Nanostructured electrode materials for electrochemical energy storage and conversion[J]. Energy & Environmental Science, 2008, 1(6):621-638.
[9] SAIDI Y M, KOKSBANG R, SAIDI S E, et al. Rocking-chair batteries based on LiMnO4 and V6O13[J]. Journal of Power Sources, 1997, 68(2):726-729.
[10] PERS N, LING Y, DEWULF D, et al. V6O13 films by control of the oxidation state from aqueous precursor to crystalline phase[J]. Dalton Transactions, 2013, 42(4):959-968.
[11] XIA Y Y, FUJIEDA T, TATSUMI K, et al. Thermal and electrochemical stability of cathode materials in solid polymer electrolyte[J]. Journal of Power Sources, 2001, 92(1):234-243.
[12] BARKER J, KOKSBANG R. The interfacial impedance variation of V6O13 composite electrodes during lithium insertion and extraction[J]. Electrochimica Acta, 1995, 40(6):673-679.
[13] BARKER J, SAIDI E S, SAUDI M Y. An investigation into the discharge capacity loss for composite insertion electrodes based on LixV6O13[J]. Electrochimica Acta, 1995, 40(8):949-952.
[14] BJÖRK H, LIDIN S, GUSTAFSSON T, et al. Superlattice formation in the lithiated vanadium oxide phases Li0.67V6O13 and LiV6O13[J]. Acta Crystallographica Section B, 2001, 57(6):759-765.
[15] HÖWING J, GUSTAFSSON T, THOMAS O J. Low-temperature structure of V6O13[J]. Acta Crystallographica Section B, 2003, 59(6):747-752.
[16] SOUDAN P, PEREIRA-RAMOS P J, FARCY J, et al. Sol-gel chromium-vanadium mixed oxides as lithium insertion compounds[J]. Solid State Ionics, 2000, 135(1):291-295.
[17] LEGER C, BACH S, PEREIRA-RAMOS P J. The sol-gel chromium-modified V6O13 as a cathode material for lithium batteries[J]. Journal of Solid State Electrochemistry, 2007, 11(1):71-76.
[18] HE J Y, LONG F, ZOU Z G. Hydrothermal synthesis and electrochemical performance of Mn-doped V6O13 as cathode material for lithium-ion battery[J]. Ionics, 2015, 21(4):995-1001.
[19] ZHAN S Y, WANG C Z, NIKOLOWSKI K, et al. Electrochemical properties of Cr doped V2O5 between 3.8 V and 2.0 V[J]. Solid State Ionics, 2009, 180(20):1198-1203.
[20] SHI Q W, HUANG W X, ZHANG Y X, et al. Giant phase transition properties at terahertz range in VO2 films deposited by sol-gel method[J]. Applied Materials & Interfaces, 2011, 3(9):3523-3527.
[21] NETHRAVATHI C, RAJAMATHI R C, RAJAMATHI M, et al. N-doped graphene-VO2(B) nanosheet-built 3D flower hybrid for lithium ion battery[J]. Applied Materials & Interfaces, 2013, 5(7):2708-2714.
[22] WU X F, WU Z M, JI C H, et al. THz transmittance and electrical properties tuning across IMT in vanadium dioxide films by Al doping[J]. Applied Materials & Interfaces, 2016, 8(18):11842-11850.
[23] WANG Y X, LIANG W Z, HUANG W, et al. Structural and optical properties of the Fe-doped BaTiO3 thin films grown on LaAlO3 by polymer-assisted deposition technique[J]. Journal of Materials Science:Materials in Electronics, 2016, 27(6):6382-6388.
[24] HOWING J, GUSTAFSSON T, THOMAS J O. Li3+δV6O13:a short-range-ordered lithium insertion mechanism[J]. Acta Crystallographica Section B, 2004, 60(4):382-387.
[25] BJORK H, LIDIN S, GUSTAFSSON T, et al. Superlattice formation in the lithiated vanadium oxide phases Li0.67V6O13 and LiV6O13[J]. Acta Crystallographica Section B, 2001, 57(6):7591765.
[26] BERGSTROEM O, GUSTAFSSON T, THOMAS J O. Lithium insertion into V6O13 studied by deformation electron density refinement of single-crystal X-ray data[J]. Solid State Ionics, 1998, 110(3):179-186.
[27] 陈学记. 纳米VOx的溶剂热制备及电化学性能的研究[D]. 合肥:合肥工业大学,2008. CHEN X J. Slovothermal synthesis and electrchemical properties of nano vanadium oxides[D]. Hefei:Hefei University of Technology, 2008.
[1] 班丽卿, 高敏, 庞国耀, 柏祥涛, 李钊, 庄卫东. 富锂锰基Li1.2[Co0.13Ni0.13Mn0.54]O2锂离子正极材料的磷改性研究[J]. 材料工程, 2020, 48(7): 103-110.
[2] 张淑娴, 邓凌峰, 连晓辉, 谭洁慧, 李金磊. 微量CNTs包覆对LiNi0.8Co0.1Mn0.1O2正极材料电化学性能的影响[J]. 材料工程, 2020, 48(5): 68-74.
[3] 巩桂芬, 徐阿文, 邹明贵, 邢韵, 辛浩. EVOH-SO3Li/P(VDF-HFP)/HAP锂离子电池隔膜的制备及电化学性能[J]. 材料工程, 2020, 48(5): 75-82.
[4] 刘乐浩, 莫金珊, 李美成, 赵廷凯, 李铁虎, 王大为. 纳米颗粒的自组装及其在锂离子电池中的应用[J]. 材料工程, 2020, 48(4): 15-24.
[5] 李旭, 孙晓刚, 王杰, 陈玮, 黄雅盼, 梁国东, 魏成成, 胡浩. 无黏结剂柔性Si/CNT/纤维素复合阳极及其电化学性能[J]. 材料工程, 2020, 48(4): 139-144.
[6] 蔺佳明, 赵桃林, 王育华. Li2ZrO3包覆锂离子电池正极材料Li[Li0.2Ni0.2Mn0.6]O2的制备及其电化学性能[J]. 材料工程, 2020, 48(3): 112-120.
[7] 许剑轶, 张国芳, 胡峰, 王瑞芬, 寇勇, 张胤. La-Mg-Ni系A5B19超晶格负极材料相结构及电化学性能[J]. 材料工程, 2020, 48(2): 46-52.
[8] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[9] 陈德鑫, 李智敏, 李高锋, 张茂林, 张东岩, 闫养希. Mg2+掺杂对Li1.2Mn0.6Ni0.2O2正极材料性能的影响[J]. 材料工程, 2020, 48(10): 157-162.
[10] 李嘉俊, 刘磊, 卢玉晓, 孙之剑, 马蕾. 纳米Li2MnSiO4正极材料的高压水热法制备及其电化学特性[J]. 材料工程, 2019, 47(9): 108-115.
[11] 马敬玉, 杨凯淇, 张敏, 杨晗, 马晓燕. POSS-(PMMA46)8浸渍涂覆商业PP隔膜的结构与性能[J]. 材料工程, 2019, 47(9): 116-122.
[12] 黄贤凯, 邵泽超, 常增花, 王建涛. 导电炭黑对富锂锰基层状氧化物电极性能的影响[J]. 材料工程, 2019, 47(8): 13-21.
[13] 赵斌, 张芮境, 申倩倩, 王羿, 薛晋波, 张爱琴, 贾虎生. TiO2纳米管阵列基底退火温度对CdSe/TiO2异质结薄膜光电化学性能的影响[J]. 材料工程, 2019, 47(8): 90-96.
[14] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
[15] 常增花, 王建涛, 李文进, 武兆辉, 卢世刚. 锂离子电池硅基负极界面反应的研究进展[J]. 材料工程, 2019, 47(2): 11-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn