Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (1): 119-124    DOI: 10.11868/j.issn.1001-4381.2016.000710
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
AZO@C柔性纳米纤维的制备与性能
马慧1,2, 高强1,2,3, 夏永辉2, 刘婉婉1,2, 葛明桥1,2
1. 江南大学 生态纺织教育部重点实验室, 江苏 无锡 214122;
2. 江南大学 纺织服装学院, 江苏 无锡 214122;
3. 聚合物分子工程国家重点实验室(复旦大学), 上海 200438
Preparation and Properties of Flexible AZO@C Nanofibers
MA Hui1,2, GAO Qiang1,2,3, XIA Yong-hui2, LIU Wan-wan1,2, GE Ming-qiao1,2
1. Key Laboratory of Eco-textiles(Ministry of Education), Jiangnan University, Wuxi 214122, Jiangsu, China;
2. College of Textile & Clothing, Jiangnan University, Wuxi 214122, Jiangsu, China;
3. StateKey Laboratory of Molecular Engineering of Polymers, FudanUniversity, Shanghai 200438, China
全文: PDF(3523 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以聚乙烯醇(PVA)为原料,成功制备了新型掺铝氧化锌包覆碳结构(AZO@C)的柔性纳米纤维。首先通过静电纺丝制备PVA初生纳米纤维,经过热处理工艺提高纳米纤维的耐水性,然后采用水热合成法在其表面包覆一层锌铝氢氧化物,再经过在500℃高温条件下烧结,PVA表面包覆的锌铝氢氧化物发生脱水反应形成致密的掺铝氧化锌(AZO)纳米粒子,同时PVA纳米纤维在高温煅烧中被炭化,形成一种新型AZO@C纳米复合材料。采用红外光谱(FT-IR)、热重分析仪(TGA)、扫描电镜(SEM)等对纳米纤维结构与性能进行测试及表征,AZO@C纳米纤维的平均直径为(320±45)nm。并通过太阳光下降解甲基橙实验证明了AZO@C柔性纳米纤维的光催化降解性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马慧
高强
夏永辉
刘婉婉
葛明桥
关键词 纳米纤维中空柔性掺铝氧化锌    
Abstract:A new type of environmental-friendly flexible nanofibers of aluminum doped zinc oxide (AZO) coated carbon (AZO@C) was successfully prepared by using polyvinyl alcohol (PVA) as raw materials. The as-spun PVA nanofibers were prepared via electrospinning and its water resistance was greatly improved after heat-treatment. Then, the PVA nanofibers with a layer of zinc aluminum hydroxide on the surface were synthesized by hydrothermal method. Thereafter, new AZO@C composite nanofibers was produced after sintering at 500℃ to the carbonization of PVA nanofibers and the dehydration of zinc aluminum hydroxide to form AZO nanoparticles. The structure and properties of the samples were characterized by Fourier-transform infrared spectrometer (FT-IR), thermal gravimetric analyzer (TGA) and scanning electron microscope (SEM). The average diameter of the AZO@C nanofibers is (320±45)nm. The photocatalytic property of the resultant composite fibers is demonstrated by degrading methyl orange under solar light.
Key wordsnanofiber    hollow    flexible    AZO
收稿日期: 2016-06-11      出版日期: 2018-01-18
中图分类号:  TQ638  
通讯作者: 高强(1983-),男,副教授,博士,主要研究方向为导电纤维的制备与开发,联系地址:江苏省无锡市滨湖区蠡湖大道1800号江南大学纺织服装学院(214122),E-mail:gaoqiang@jiangnan.edu.cn     E-mail: gaoqiang@jiangnan.edu.cn
引用本文:   
马慧, 高强, 夏永辉, 刘婉婉, 葛明桥. AZO@C柔性纳米纤维的制备与性能[J]. 材料工程, 2018, 46(1): 119-124.
MA Hui, GAO Qiang, XIA Yong-hui, LIU Wan-wan, GE Ming-qiao. Preparation and Properties of Flexible AZO@C Nanofibers. Journal of Materials Engineering, 2018, 46(1): 119-124.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000710      或      http://jme.biam.ac.cn/CN/Y2018/V46/I1/119
[1] SHI W, LI H, ZHOU R, et al. Preparation and characterization of phosphotungstic acid/PVA nanofiber composite catalytic membranes via electrospinning for biodiesel production[J]. Fuel, 2016, 180:759-766.
[2] COZZA E S, MONTICELLI O, MARSANO E, et al. On the electrospinning of PVDF:influence of the experimental conditions on the nanofiber properties[J]. Polymer International, 2013, 62(1):41-48.
[3] 谭和平, 侯晓妮, 孙登峰, 等. 纳米材料的表征与测试方法[J]. 中国测试, 2013, 39(1):8-12. TAN H P, HOU X N, SUN D F, et al. Characterization and measurement of nanomaterials[J]. China Measurement & Test, 2013, 39(1):8-12.
[4] 滕乐天, 赵康, 王红珍, 等. 静电纺丝技术制备TiO2/NiO复合中空纳米纤维及光催化性能[J]. 人工晶体学报, 2014, 43(12):3175-3179. TENG L T, ZHAO K, WANG H Z, et al. Preparation and photocatalytic properties of TiO2/NiO hollow nanofibers via electrospinning technology[J]. Synthetic Crystals, 2014, 43(12):3175-3179.
[5] BAGHERI H, REZVANI O, BANIHASHEMI S. Core-shell electrospun polybutylene terephthalate/polypyrrole hollow nanofibers for micro-solid phase extraction[J]. Journal of Chromatography A, 2016, 1434:19-28.
[6] KIM J H, KIM B H. Hierarchical porous MnO2/carbon nanofiber composites with hollow cores for high-performance supercapacitor electrodes:effect of poly (methyl methacrylate) concentration[J]. Electrochimica Acta, 2016, 200:174-181.
[7] ZHOU H, LI Z, QIU Y, et al. The effects of carbon distribution and thickness on the lithium storage properties of carbon-coated SnO2 hollow nanofibers[J]. Journal of Alloys and Compounds, 2016, 670:35-40.
[8] AHM K, PHAM-CONG D, CHOI H S, et al. Bandgap-designed TiO2/SnO2 hollow hierarchical nanofibers:synthesis, properties, and their photocatalytic mechanism[J]. Current Applied Physics, 2016, 16(3):251-260.
[9] PENG C, ZHANG J, XIONG Z, et al. Fabrication of porous hollow γ-Al2O3 nanofibers by facile electrospinning and its application for water remediation[J]. Microporous and Mesoporous Materials, 2015, 215:133-142.
[10] 戴磊,龙柱,张丹,TEMPO氧化纤维素纳米纤维的制备及应用研究进展[J].材料工程,2015,43(8):84-91. DAI L, LONG Z, ZHANG D. Research progress in preparation and application of TEMPO-oxidized cellulose nanofibers[J].Journal of Materials Engineering, 2015,43(8):84-91.
[11] LONG Y Z, LI M M, GU C, et al. Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers[J]. Progress in Polymer Science, 2011, 36(10):1415-1442.
[12] 刘朋超, 龚静华, 杨曙光, 等. 静电纺丝法制备陶瓷中空纳米纤维的研究进展[J]. 无机材料学报, 2013, 28(6):571-578. LIU P C, GONG J H, YANG S G, et al. Research progress on the preparation of ceramic hollow nanofibers by electrospinning[J]. Inorganic Materials, 2013, 28(6):571-578.
[13] 李甫,康卫明,程博闻,等.负载银中空纳米碳纤维的制备及电化学性能[J].材料工程,2016,44(11):56-60. LI F, KANG W M, CHENG B W, et al. Preparation and electrochemical properties of silver doped hollow carbon nanofibers[J]. Journal of Materials Engineering, 2016,44(11):56-60.
[14] 白帆, 吴俊涛, 龚光明, 等. 静电纺丝技术制备聚合物基中空结构材料[J]. 高等学校化学学报, 2013, 34(4):751-759. BAI F, WU J T, GONG G M, et al. Fabrication of polymeric hollow structure by electrospinning[J]. Chemical Journal of Chinese Universities, 2013, 34(4):751-759.
[15] SHAO W, HE J, SANG F, et al. Coaxial electrospun aligned tussah silk fibroin nanostructured fiber scaffolds embedded with hydroxyapatite-tussah silk fibroin nanoparticles for bone tissue engineering[J]. Materials Science and Engineering:C, 2016, 58:342-351.
[16] 曹厚宝. 同轴电纺皮芯结构无机纳米纤维膜的制备及其应用[D]. 杭州:浙江理工大学, 2014. CAO H B. Fabrication and application of sheath-core inorganic nanofibers membrane by co-electrospinning[J]. Hangzhou:Zhejiang Sci-Tech University, 2014.
[17] DONMEZ I, KAYACI F, OZGIT-AKGUN C, et al. Fabrication of hafnia hollow nanofibers by atomic layer deposition using electrospun nanofiber templates[J]. Journal of Alloys and Compounds, 2013, 559:146-151.
[18] WEI S, ZHANG Y, ZHOU M. Toluene sensing properties of SnO2-ZnO hollow nanofibers fabricated from single capillary electrospinning[J]. Solid State Communications, 2011, 151(12):895-899.
[19] 胡明江. 复合纳米纤维光催化降解醛酮类污染物的研究[J]. 环境科学学报, 2015, 35(1):215-221. HU M J. Preparation of composite nanofibers for photocatalytic degradation of aldehyde and ketone[J]. Acta Scientiae Circumstantiae, 2015, 35(1):215-221.
[20] 胡美羚. 静电纺丝法制备复合TiO2纳米纤维及其光催化性能的研究[D].北京:中国地质大学(北京), 2014. HU M L. Study on fabrication and photocatalysis properties of TiO2 composite nanofibers by electrospinning[D]. Beijing:China University of Geosciences (Beijing), 2014.
[21] CHANG W, XU F, MU X, et al. Fabrication of nanostructured hollow TiO2 nanofibers with enhanced photocatalytic activity by coaxial electrospinning[J]. Materials Research Bulletin, 2013, 48(7):2661-2668.
[22] GAO Q, TAKIZAWA J, KIMURA M. Hydrophilic non-wovens made of cross-linked fully-hydrolyzed poly (vinyl alcohol) electrospun nanofibers[J]. Polymer, 2013, 54(1):120-126.
[23] 何晓伟. Ag/PVA纳米复合纤维膜的制备及抗菌性能研究[D]. 郑州:中原工学院, 2011. HE X W. Preparation of Ag-polyvinyl alcohol nanofibers and their antibacterial property[D]. Zhengzhou:Zhongyuan University of Technology, 2011.
[1] 李雅芳, 刘皓, 赵义侠. 基于镀银纱线的电加热织物温度场模拟与电热性能[J]. 材料工程, 2019, 47(2): 68-75.
[2] 王松林, 徐向棋, 王东生. 微管SOFC复合支撑体NiO/La0.7Ca0.3CrO3-δ的相转化纺丝法制备与性能[J]. 材料工程, 2019, 47(2): 42-48.
[3] 邹海强, 杨隽逸, 郑玉婴, 陈健, 卢秀恋. 液相共沉淀法制备MnO2/CNFs催化剂及其低温脱硝性能[J]. 材料工程, 2018, 46(9): 53-58.
[4] 张宇, 黄峰, 马金瑞, 刘强, 孙煜. 羟基化处理对氮化硼膜耐原子氧性能的影响[J]. 材料工程, 2018, 46(7): 61-67.
[5] 陈港, 彭从星, 况宇迪, 曾勇, 朱朋辉, 姚日晖, 宁洪龙, 方志强. 纳米纸衬底的制备、性能及其在柔性电子器件中的应用[J]. 材料工程, 2018, 46(6): 1-10.
[6] 王一博, 赵九蓬. 3D打印柔性可穿戴锂离子电池[J]. 材料工程, 2018, 46(3): 13-21.
[7] 夏永辉, 高强, 王阳毅, 李梦娟. AZO中空纳米纤维的制备及光催化性能[J]. 材料工程, 2018, 46(2): 16-21.
[8] 金欣, 畅旭东, 王闻宇, 朱正涛, 林童. 基于聚二甲基硅氧烷柔性可穿戴传感器研究进展[J]. 材料工程, 2018, 46(11): 13-24.
[9] 余煜玺, 马锐. SiC微/纳米纤维毡增强SiO2气凝胶复合材料的制备和表征[J]. 材料工程, 2018, 46(11): 45-50.
[10] 李可峰, 尹晓燕. 聚苯醚纳米纤维锂电隔膜的制备[J]. 材料工程, 2018, 46(10): 120-126.
[11] 胡佳勋, 张闻达, 曹琴, 吴叔青. 聚多巴胺改性中空玻璃微珠表面化学镀铜的研究[J]. 材料工程, 2018, 46(1): 61-66.
[12] 郭安儒, 李杰, 肖德海, 刘畅. 高柔性隔热软木复合材料的制备与性能[J]. 材料工程, 2017, 45(11): 1-9.
[13] 王忠兵, 洪强, 罗小杰, 章谏正, 宋英红, 吴松华, 杨保俊. 高分子中空微球的制备及其在聚硫密封剂中的应用[J]. 材料工程, 2016, 44(4): 14-19.
[14] 戴磊, 龙柱, 张丹. TEMPO氧化纤维素纳米纤维的制备及应用研究进展[J]. 材料工程, 2015, 43(8): 84-91.
[15] 郝红英, 王茜, 王文俊. CRGP柔性导电薄膜及其超级电容器制备与性能[J]. 材料工程, 2015, 43(7): 26-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn