Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (1): 125-132    DOI: 10.11868/j.issn.1001-4381.2016.000590
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
表面处理对碳纤维基β-PbO2电极性能的影响
许健, 竺培显, 韩朝辉, 曹勇, 周生刚
昆明理工大学 材料科学与工程学院电渣室, 昆明 650093
Effect of Surface Treatment on Performance of Electrode Material Based on Carbon Fiber Cloth
XU Jian, ZHU Pei-xian, HAN Zhao-hui, CAO Yong, ZHOU Sheng-gang
Electroslag Chamber, Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
全文: PDF(1768 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 对碳纤维布进行表面处理,采用电沉积法制备碳纤维基β-PbO2电极材料,并对碳纤维基β-PbO2电极材料的导电性能、电化学性能和耐腐蚀性能进行研究。结果表明:通过表面处理,能够显著改善碳纤维的表面粗糙度和化学活性。热空气氧化温度为400℃时,碳纤维表面的化学活性最高;热空气氧化和液相氧化双重氧化发现,碳纤维表面的化学活性进一步提高,表面的沟槽和凹坑更为明显,经此表面处理条件后制备的碳纤维电极界面电阻率最低为6.19×10-5Ω·m,导电性能和电化学性能最好,耐腐蚀性能最强,腐蚀速率仅为1.44×10-3g·cm-2·h-1,由此说明,不同表面处理条件能够极大地影响碳纤维电极材料界面结合性能,从而影响碳纤维基β-PbO2电极材料的导电性能、电化学性能和耐腐蚀性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
许健
竺培显
韩朝辉
曹勇
周生刚
关键词 碳纤维基β-PbO2电极表面处理界面电阻率电化学性能耐腐蚀性能    
Abstract:The carbon fiber cloth was treated by surface treatment, and then it was used as the electrode substrate. The electrode material based on carbon fibers was synthesized by a galvanostatic electrodeposition method. The interface resistivity, electrochemical property and corrosion resistance of the CF/β-PbO2 electrode were characterized by four-probe method and electrochemical workstation, respectively. The results show that the surface roughness and chemical activity of the carbon fibers can be significantly improved through surface treatment. The carbon fibers possess the best chemical activity on the surface at the hot-air oxidation temperature of 400℃. Joint hot-air and liquid-phase oxidations show that the chemical activity of the carbon fibers on the surface is further improved, the grooves and pits on the surface of the carbon fibers are more obvious, after this treatment, the interface resistivity of the CF/β-PbO2 electrode reaches the minimum value of 6.19×10-5Ω·m, meanwhile, the conductivity and the electrochemical property of the CF/β-PbO2 electrode reaches the best, and with the best corrosion resistance, the corrosion rate is only 1.44×10-3g·cm-2·h-1.Thus, the interface resistivity, electrochemical property and corrosion resistance of the CF/β-PbO2 electrode depend on the the interface structure of the CF/β-PbO2 electrode obtained under different surface treatments.
Key wordsCF/β-PbO2 electrode    surface treatment    interface resistivity    electrochemical property    corrosion resistance
收稿日期: 2016-05-14      出版日期: 2018-01-18
中图分类号:  TB333  
通讯作者: 曹勇(1981-),男,讲师,博士,研究方向:金属基复合材料,联系地址:云南省昆明理工大学材料科学与工程学院(650093),E-mail:545143515@qq.com     E-mail: 545143515@qq.com
引用本文:   
许健, 竺培显, 韩朝辉, 曹勇, 周生刚. 表面处理对碳纤维基β-PbO2电极性能的影响[J]. 材料工程, 2018, 46(1): 125-132.
XU Jian, ZHU Pei-xian, HAN Zhao-hui, CAO Yong, ZHOU Sheng-gang. Effect of Surface Treatment on Performance of Electrode Material Based on Carbon Fiber Cloth. Journal of Materials Engineering, 2018, 46(1): 125-132.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000590      或      http://jme.biam.ac.cn/CN/Y2018/V46/I1/125
[1] JAIMES R, MIRANDA-HERNÁNDEZ M, LARTUNDO-ROJAS L, et al. Characterization of anodic deposits formed on Pb-Ag electrodes during electrolysis in mimic zinc electrowinning solutions with different concentrations of Mn(Ⅱ)[J]. Hydrometallurgy, 2015, 156:53-62.
[2] ZHAO Y F, SI S H, WANG L, et al. Electrochemical behavior of polyaniline microparticle suspension as flowing anode for rechargeable lead dioxide flow battery[J]. Journal of the Electrochemical Society, 2014, 161(3):A330-A335.
[3] ZHANG W, GHALI E, HOULACHI G. Testing methods of catalytic anodes and conventional lead alloys in zinc and copper electrowining[J]. Materials Technology, 2014, 29(1):A48-A56.
[4] ASIM S, YIN J, YUE X, et al. Controlled fabrication of hierarchically porous Ti/Sb-SnO2 anode from honeycomb to network structure with high electrocatalytic activity[J]. Rsc Advances, 2015, 5(36):28803-28813.
[5] SHAN R, ZHANG Z C, KAN M, et al. A novel highly active nanostructured IrO2/Ti anode for water oxidation[J]. International Journal of Hydrogen Energy, 2015, 40(41):14279-14283.
[6] GARCÍA-GÍMEZ C, VIDALES J A, NÁPOLES-ARMENTA J, et al. Optimization of phenol removal using Ti/PbO2 anode with response surface methodology[J]. Journal of Environmental Engineering, 2016, 142(4):040160041.
[7] MUNICHANDRAIAH N, SATHYANARAYANA S. Insoluble anode of porous lead dioxide for electrosynthesis:preparation and characterization[J]. Journal of Applied Electrochemistry, 1987, 17(1):22-32.
[8] PETROVA M, STEFANOV Y, NONCHEVA Z, et al. Electrochemical behaviour of lead alloys as anodes in zinc electrowining[J]. British Corrosion Journal, 1999, 34(34):198-200.
[9] HRUSSANOVA A, MIRKOVA L, DOBREV T, et al. Influence of temperature and current density on oxygen overpotential and corrosion rate of Pb-Co3O4, Pb-Ca-Sn and Pb-Sn anodes for copper electrowinning:Part 1[J]. Hydrometallurgy, 2004, 72(3/4):205-213.
[10] NIJJER S, THONSTAD J, HAARBERG G M. Cyclic and linear voltammetry on Ti/IrO2-Ta2O5-MnOx electrodes in sulfuric acid containing Mn2+ ions[J]. Electrochimica Acta, 2001, 46(23):3503-3508.
[11] XING X G, HAN Z J, WANG H F, et al. Electrochemical corrosion resistance of CeO2-Cr/Ti coatings on 304 stainless steel via pack cementation[J]. Journal of Rare Earths, 2015, 33(10):1122-1128.
[12] SONG Y H, WEI G, XIONG R C. Structure and properties of PbO2-CeO2 anodes on stainless steel[J]. Electrochimica Acta, 2007, 52(24):7022-7027.
[13] YANG H T, CHEN B M, GUO Z C, et al. Effects of current density on preparation and performance of Al/conductive coating/α-PbO2-CeO2-TiO2/β-PbO2-MnO2-WC-ZrO2 composite electrode materials[J]. Transactions of Nonferrous Metals Society of China, 2014, 24:3394-3404.
[14] CAO M, GUO Z C, CUI X, et al. The study on the surface morphology of Al/SnO2-Sb2O3 or SnO2-Sb2O3-MnO2/PbO2 electrode material[J]. Advanced Materials Research, 2010, 97/101:1805-1808.
[15] TRASATTI S. Electrocatalysis in the anodic evolution of oxygen and chlorine[J]. Electrochimica Acta, 1984, 29(11):1503-1512.
[16] 周明华,戴启洲,雷乐成,等.新型二氧化铅阳极电催化降解有机污染物的特性研究[J].物理化学学报, 2004, 20(8):871-876. ZHOU M H, DAI Q Z, LEI L C, et al. Electrochemical oxidation for the degradation of organic pollutants on a novel PbO2 anode[J]. Acta Physico-Chimica Sinica, 2004, 20(8):871-876.
[17] LI Q F, BJERRUM N J. Aluminum as anode for energy storage and conversion:a review[J]. Journal of Power Sources, 2002, 110(1):1-10.
[18] ZHANG S, LIU W B, WANG J, et al. Improvement of interfacial properties of carbon fiber-reinforced poly (phthalazinone ether ketone) composites by introducing carbon nanotube to the interphase[J]. Polymer Composites, 2015, 36(1):26-33.
[19] LI S, ZHANG Y M, ZHOU Y F. Preparation and characterization of sol-gel derived zirconia coated carbon fiber[J]. Surface and Coatings Technology, 2012, 206(23):4720-4724.
[20] LIU W B, ZHANG S, HAO L F, et al. Properties of carbon fiber sized with poly (phthalazinone ether ketone) resin[J]. Journal of Applied Polymer Science, 2013, 128(6):3702-3709.
[21] DONG X Z, LU C X, ZHOU P C, et al. Polyacrylonitrile/lignin sulfonate blend fiber for low-cost carbon fiber[J]. Rsc Advances, 2015, 5(53):42259-42265.
[22] LEI D Y, DEVARAYAN K, SEO M K, et al. Flexible polyaniline-decorated carbon fiber nanocomposite mats as supercapacitors[J]. Materials Letters, 2015, 154:173-176.
[23] 李玲.碳纤维基体二氧化铅电极材料制备及应用研究[D].南京:南京理工大学, 2012. LI L. Study on preparation of PbO2/CF electrode and its property[D]. Nanjing:Nanjing University of Science and Technology, 2012.
[24] 石峰晖,代志双,张宝艳.碳纤维表面性质分析及其对复合材料界面性能的影响[J].航空材料学报, 2010, 30(3):43-47. SHI F H, DAI Z S, ZHANG B Y. Characterization of surface properties of carbon fibers and interfacial properties of carbon fibers reinforced matrix composites[J]. Journal of Aeronautical Materials, 2010, 30(3):43-47.
[1] 李高锋, 李智敏, 宁涛, 张茂林, 闫养希, 向黔新. 锂离子电池正极材料表面包覆改性研究进展[J]. 材料工程, 2018, 46(9): 23-30.
[2] 王匀, 陈英箭, 许桢英, 唐书浩. 基体表面粗糙度对热丝TIG堆焊Inconel625组织和耐腐蚀性能的影响[J]. 材料工程, 2018, 46(7): 94-99.
[3] 李诗杰, 张继刚, 李金晓, 韩奎华, 韩旭东, 路春美. 超级电容器用马尾藻基超级活性炭的制备及其电化学性能[J]. 材料工程, 2018, 46(7): 157-164.
[4] 南文争, 燕绍九, 彭思侃, 张晓艳, 刘大博, 戴圣龙. 磷酸铁锂/石墨烯复合材料的合成及电化学性能[J]. 材料工程, 2018, 46(4): 43-50.
[5] 巩桂芬, 王磊, 兰健. EVOH-SO3Li/PET电纺锂离子电池隔膜电化学性能[J]. 材料工程, 2018, 46(3): 7-12.
[6] 邓凌峰, 覃昱焜, 彭辉艳, 连晓辉, 吴义强. 高温还原GO制备LiFePO4/石墨烯复合正极材料及表征[J]. 材料工程, 2018, 46(2): 9-15.
[7] 孙伟, 朱立群, 李卫平, 刘慧丛. 硅溶胶改性水性丙烯酸树脂对镀锌三价铬钝化膜的封闭作用[J]. 材料工程, 2018, 46(12): 110-116.
[8] 辛兆鹏, 方伟, 赵雷, 何漩, 陈辉, 李薇馨, 孙志敏. 液相泡沫复合微波活化技术制备分级多孔泡沫碳及电化学性能[J]. 材料工程, 2018, 46(11): 63-70.
[9] 李可峰, 尹晓燕. 聚苯醚纳米纤维锂电隔膜的制备[J]. 材料工程, 2018, 46(10): 120-126.
[10] 袁琦, 邹正光, 万振东, 韩世昌. 锂离子电池正极材料铁掺杂V6O13的制备及电化学性能[J]. 材料工程, 2018, 46(1): 106-113.
[11] 王询, 林建平, 万海浪. 铝合金表面特性对其胶接性能影响的研究进展[J]. 材料工程, 2017, 45(8): 123-131.
[12] 马昊, 刘磊, 苏杰, 路雪森. 锂离子电池Sn基负极材料研究进展[J]. 材料工程, 2017, 45(6): 138-146.
[13] 邓凌峰, 彭辉艳, 覃昱焜, 吴义强. 碳纳米管与石墨烯协同改性天然石墨及其电化学性能[J]. 材料工程, 2017, 45(4): 121-127.
[14] 张红涛, 尚华, 顾波, 张恒源. 沸石基锂离子电池隔膜的制备及性能[J]. 材料工程, 2017, 45(12): 83-87.
[15] 张国芳, 张羊换, 许剑轶, 侯忠辉. Ni-5% RExOy复合添加剂对Mg2Ni电化学储氢性能的影响[J]. 材料工程, 2017, 45(11): 72-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn