Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (1): 31-36    DOI: 10.11868/j.issn.1001-4381.2015.000581
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
铝合金中温自反应钎焊机理的研究
程方杰1,2, 齐书梅2, 杨振文1,2, 姚俊峰2, 赵欢2
1. 天津大学 天津市现代连接技术重点实验室, 天津 300072;
2. 天津大学 材料科学与工程学院, 天津 300072
Self-brazing Mechanism of Aluminum Alloy at Medium Temperature
CHENG Fang-jie1,2, QI Shu-mei2, YANG Zhen-wen1,2, YAO Jun-feng2, ZHAO Huan2
1. Tianjin Key Laboratory of Advanced Joining Technology, Tianjin University, Tianjin 300072, China;
2. School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
全文: PDF(2421 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 在AlF3-CsF共晶钎剂中添加ZnCl2和SnCl2两种活化物质,制备出可用于钎焊薄板铝合金的中温自反应钎剂。研究钎剂中活化物质含量和T形接头连接面积对接头界面组织与力学性能的影响。采用金相光学显微镜、扫描电子显微镜和能谱仪对钎焊接头微观组织、相成分、缺陷及断口形貌进行分析。结果表明:当钎剂中两种活化物质添加量都在4%(质量分数)左右时,钎焊接头连接最致密;钎焊时钎剂中的Zn2+和Sn2+与两侧母材中的Al原子发生置换反应生成液态金属Sn与Zn,与Al互溶度大的Zn迅速向母材扩散,而Sn由于在Al中固溶度小,与少量Zn和Al残留在界面上形成低熔点金属层;自反应钎剂易实现小连接面积接头的连接;接头拉伸断口中有大量韧窝存在,抗拉强度达到(58±5)MPa。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
程方杰
齐书梅
杨振文
姚俊峰
赵欢
关键词 铝合金中温钎焊自反应钎剂界面反应    
Abstract:ZnCl2 and SnCl2 were added to the AlF3-CsF eutectic flux, which can be used for connecting aluminum alloy sheet by self-brazing at medium temperature. The influence of the amount of ZnCl2 and SnCl2 and the size of the T-joint area on the interface microstructure and the self-brazing joint mechanical properties was investigated. The interface microstructure, chemical compositions, defects and tensile fractography of the self-brazing joints were analyzed by metallographic microscope, scanning electron microscope and energy dispersive spectroscopy. The results show that the joints are soundly bonded when both the mass fractions of ZnCl2 and SnCl2 are about 4%; the replacement reactions between Zn2+, Sn2+ of flux and Al atoms of base metal occur during brazing, then the liquid metals of Sn and Zn appear, a great degree of Zn which has high solid solution with Al spreads rapidly to the base metal; Sn is distributed along the interface forming a low melting point metal layer with Zn and Al; the brazing of joints with small area can be realized easily; there are a lot of dimples on the fracture surface and the tensile strength of the brazing joint reaches (58±5)MPa.
Key wordsaluminum alloy    medium temperature brazing    self-brazing flux    interface reaction
收稿日期: 2015-05-11      出版日期: 2018-01-18
中图分类号:  TG454  
通讯作者: 杨振文(1985-),男,博士,讲师,研究方向:新材料及异种材料钎焊,联系地址:天津市津南区雅观路135号天津大学北洋园校区31楼材料学院(300350),E-mail:tjuyangzhenwen@163.com     E-mail: tjuyangzhenwen@163.com
引用本文:   
程方杰, 齐书梅, 杨振文, 姚俊峰, 赵欢. 铝合金中温自反应钎焊机理的研究[J]. 材料工程, 2018, 46(1): 31-36.
CHENG Fang-jie, QI Shu-mei, YANG Zhen-wen, YAO Jun-feng, ZHAO Huan. Self-brazing Mechanism of Aluminum Alloy at Medium Temperature. Journal of Materials Engineering, 2018, 46(1): 31-36.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.000581      或      http://jme.biam.ac.cn/CN/Y2018/V46/I1/31
[1] 李小强, 肖晴, 李力, 等. Al-Si-Cu-Zn钎料钎焊3003铝合金的接头组织及力学性能[J]. 材料工程, 2016, 44(9):32-37. LI X Q, XIAO Q, LI L, et al. Microstructure and mechanical property of 3003 aluminum alloy joint brazed with Al-Si-Cu-Zn filler metal[J]. Journal of Materials Engineering, 2016, 44(9):32-37.
[2] 夏盛来, 何景武, 王耀东. 蜂窝夹芯板表面加工的平整度分析[J]. 材料工程, 2012(6):43-47. XIA S L, HE J W, WANG Y D. Surface artifactitious smoothness analysis of honeycomb sandwich panel[J]. Journal of Materials Engineering, 2012(6):43-47.
[3] 黄敏, 陈轶, 李超, 等. 7A12-T7352铝合金高温力学性能及断裂行为研究[J]. 航空材料学报, 2014, 34(1):82-85. HUANG M, CHEN Y, LI C, et al. High temperature mechanical properties and fracture characteristics of 7A12-T7352[J]. Journal of Aeronautical Materials, 2014, 34(1):82-85.
[4] MILLER W S, ZHUANG L, BOTTEMA J, et al. Recent development in aluminium alloys for the automotive industry[J].Materials Science and Engineering:A, 2000, 280(1):37-49.
[5] LACAZE J, TIERCE S, LAFONT M C, et al. Study of the microstructure resulting from brazed aluminum materials used in heat exchangers[J]. Materials Science and Engineering:A, 2005, 413/414:317-321.
[6] NOROUZI AFSHAR F, De WIT J H W, TERRYN H, et al. The effect of brazing process on microstructure evolution and corrosion performance of a modified AA4XXX/AA3XXX brazing sheet[J]. Corrosion Science, 2012, 58:242-250.
[7] 李伟, 王英建. 铝合金真空硬钎焊缺陷分析与消除措施[J].真空电子技术, 2009(2):38-40. LI W, WANG Y J. Analysis of the causation of aluminum vacuum brazing defects and its technical eliminating measure[J].Vacuum Electronics, 2009(2):38-40.
[8] 张启运, 庄鸿寿. 钎焊手册[M]. 北京:机械工业出版社, 2007:57-111. ZHANG Q Y, ZHUANG H S. Brazing manual[M]. Beijing:China Machine Press, 2007:57-111.
[9] CHEN R, CAO J, ZHANG Q Y. A study on the phase diagram of AlF3-CsF system[J]. Thermochimica Acta, 1997, 303:145-150.
[10] XUE S B, ZHANG L, HAN Z J, et al. Reaction mechanism between oxide film on surface of Al-Li alloy and CsF-AlF3 flux[J]. Transactions of Nonferrous Metals Society of China, 2008, 18(1):121-125.
[11] 薛松柏, 董健, 吕晓春, 等. LY12铝合金中温钎焊技术[J]. 焊接学报, 2003, 24(3):21-22. XUE S B, DONG J, LÜ X C, et al. Brazing technology of LY12 Al-alloy at middle temperature[J]. Transactions of the China Welding Institution, 2003, 24(3):21-22.
[12] 李秀朋, 朱坤, 于新泉, 等. Al-12Si自钎剂钎料环的制备及3003铝合金的钎焊[J]. 焊接, 2014(1):54-56. LI X P, ZHU K, YU X Q, et al. Preparing of Al-12Si self-brazing filler metal and brazing of 3003 aluminum alloy[J]. Welding & Joining, 2014(1):54-56.
[13] OSTAFIN M, BALKENHOL M, ERLEMEYER J, et al. Self-brazing aluminium clad steel[J]. Materials Science & Engineering Technology, 2010, 41(11):946-950.
[14] CHUANG T H, YEH M S, CHAI Y H. Brazing of zirconia with AgCuTi and SnAgTi active filler metals[J]. Metallurgical and Materials Transactions A, 2000, 31(6):1591-1597.
[15] 张贵锋, 郭洋, 张林杰, 等. Zn-Al-Li系和Zn-Al系钎料对SiCp/ZL101铝基复合材料的润湿性[J].中国有色金属学报,2012, 22(6):1674-1679. ZHANG G F, GUO Y, ZHANG L J, et al. Wettability of Zn-Al-Li and Zn-Al system brazes on aluminum matrix composite of SiCp/ZL101[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(6):1674-1679.
[1] 范淑敏, 陈送义, 张星临, 周亮, 黄兰萍, 陈康华. 多级时效热处理对7056铝合金析出组织与耐蚀性的影响[J]. 材料工程, 2019, 47(6): 136-143.
[2] 王玉洁, 张鹏, 王选, 杜云慧, 王胜林, 张伟一, 鹿红梅. 氧气流量对LY12铝合金微弧氧化膜致密性的影响[J]. 材料工程, 2019, 47(5): 86-92.
[3] 李惠, 肖文龙, 张艺镡, 马朝利. 多重结构Ti-B4C/Al2024复合材料的组织和力学性能[J]. 材料工程, 2019, 47(4): 152-159.
[4] 李卫, 陈康华, 焦慧彬, 周亮, 杨振, 陈送义. 微量Ge对7056铝合金组织和淬火敏感性的影响[J]. 材料工程, 2019, 47(3): 123-130.
[5] 周航, 张峥. AlSi10Mg(Cu)铸铝合金的热疲劳裂纹萌生及早期扩展行为[J]. 材料工程, 2019, 47(3): 131-138.
[6] 陈跃良, 王安东, 卞贵学, 张勇. CF8611/AC531复合材料性能及与7B04铝合金电偶腐蚀的电化学研究[J]. 材料工程, 2019, 47(1): 97-105.
[7] 马慧媛, 刘慧丛, 石文静, 施丽铭, 李卫平, 朱立群. 应力载荷作用下5A06铝合金薄板材料在盐水中腐蚀行为[J]. 材料工程, 2018, 46(9): 152-159.
[8] 万闪, 姜丹, 蔡光义, 廖圣智, 董泽华. 铝合金超疏水转化膜的制备与性能[J]. 材料工程, 2018, 46(9): 144-151.
[9] 黄元春, 许天成, 肖政兵, 任贤魏, 贾广泽. 弥散相对3003铝合金再结晶晶粒尺寸的影响[J]. 材料工程, 2018, 46(6): 65-72.
[10] 徐勇, 靳鹏飞, 田亚强, 张士宏, 王礼良, 曾一畔. 铝合金局部热处理技术及其在板材成形中的应用发展现状[J]. 材料工程, 2018, 46(5): 44-55.
[11] 栗慧, 邹家生, 姚君山, 彭浩平. 2219高强铝合金活性TIG焊工艺[J]. 材料工程, 2018, 46(4): 66-73.
[12] 杜娟, 田辉, 陈亚军, 王付胜, 陈翘楚, 褚弘. 7A04铝合金应力腐蚀敏感性及裂纹萌生与扩展行为[J]. 材料工程, 2018, 46(4): 74-81.
[13] 杨守杰, 邢清源, 于海军, 王玉灵, 戴圣龙. 800MPa级Al-Zn-Mg-Cu系合金[J]. 材料工程, 2018, 46(4): 82-90.
[14] 何培龙, 程方杰, 肖兵, 赵欢. 添加Ge元素对CsF-AlF3钎剂熔化特性、物相结构及铺展性能的影响[J]. 材料工程, 2018, 46(4): 99-103.
[15] 金玉花, 甘瑞根, 陈飞, 邵庆丰, 王希靖, 郭廷彪. 搅拌摩擦焊辅助Al/Zn/Mg接头扩散连接[J]. 材料工程, 2018, 46(3): 55-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn