Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (1): 92-98    DOI: 10.11868/j.issn.1001-4381.2015.001295
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
泡沫铝夹层结构复合材料低速冲击性能
赵金华1, 曹海琳1,2, 晏义伍1, 丁莉1
1. 深圳航天科技创新研究院 深圳市复合材料重点实验室, 广东 深圳 518057;
2. 哈尔滨工业大学 化工学院, 哈尔滨 150001
Low Velocity Impact Properties of Aluminum Foam Sandwich Structural Composite
ZHAO Jin-hua1, CAO Hai-lin1,2, YAN Yi-wu1, DING Li1
1. Shenzhen Key Laboratory of Composite Materials, Shenzhen Academy of Aerospace Technology, Shenzhen 518057, Guangdong, China;
2. School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001, China
全文: PDF(4190 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以泡沫铝为夹芯材料,玄武岩纤维(BF)和超高分子量聚乙烯纤维(UHMWPE)复合材料为面板,制备夹层结构复合材料。研究纤维类型、铺层结构和芯材厚度对泡沫铝夹层结构复合材料冲击性能和损伤模式的影响规律,并与铝蜂窝夹层结构复合材料性能进行对比分析。结果表明:BF/泡沫铝夹层结构比UHMWPE/泡沫铝夹层结构具有更大的冲击破坏载荷,但冲击位移和吸收能量较小。BF和UHMWPE两种纤维的分层混杂设计比叠加混杂具有更高的冲击破坏载荷和吸收能量。随着泡沫铝厚度的增加,夹层结构复合材料的冲击破坏载荷降低,破坏吸收能量增大。泡沫铝夹层结构比铝蜂窝夹层结构具有更高的冲击破坏载荷,但冲击破坏吸收能量较小;泡沫铝芯材以冲击部位的碎裂为主要失效形式,铝蜂窝芯材整体压缩破坏明显。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵金华
曹海琳
晏义伍
丁莉
关键词 泡沫铝夹层结构玄武岩纤维超高分子量聚乙烯冲击性能    
Abstract:Sandwich structural composites were prepared by aluminum foam as core materials with basalt fiber(BF) and ultra-high molecular weight polyethylene(UHMWPE) fiber composite as faceplate. The effect of factors of different fiber type faceplates, fabric layer design and the thickness of the corematerials on the impact properties and damage mode of aluminum foam sandwich structure was studied. The impact properties were also analyzed to compare with aluminum honeycomb sandwich structure. The results show that BF/aluminum foam sandwich structural composites has bigger impact damage load than UHMWPE/aluminum foam sandwich structure, but less impact displacement and energy absorption. The inter-layer hybrid fabric design of BF and UHMWPE has higher impact load and energy absorption than the overlay hybrid fabric design faceplate sandwich structure. With the increase of the thickness of aluminum foam,the impact load of the sandwich structure decreases, but the energy absorption increases. Aluminum foam sandwich structure has higher impact load than the aluminum honeycomb sandwich structure, but smaller damage energy absorption; the damage mode of aluminum foam core material is mainly the fracture at the impact area, while aluminum honeycomb core has obvious overall compression failure.
Key wordsaluminum foam    sandwich structure    basalt fiber    UHMWPE    impact property
收稿日期: 2015-10-27      出版日期: 2018-01-18
中图分类号:  TB332  
通讯作者: 曹海琳(1974-),女,博士,教授,主要从事高性能复合材料设计及性能研究,联系地址:深圳市南山区科技园科技南十路深圳航天科技创新研究院C座5楼(518057),E-mail:caohl@hit.edu.cn     E-mail: caohl@hit.edu.cn
引用本文:   
赵金华, 曹海琳, 晏义伍, 丁莉. 泡沫铝夹层结构复合材料低速冲击性能[J]. 材料工程, 2018, 46(1): 92-98.
ZHAO Jin-hua, CAO Hai-lin, YAN Yi-wu, DING Li. Low Velocity Impact Properties of Aluminum Foam Sandwich Structural Composite. Journal of Materials Engineering, 2018, 46(1): 92-98.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.001295      或      http://jme.biam.ac.cn/CN/Y2018/V46/I1/92
[1] 益小苏,杜善义,张立同. 复合材料手册[M].北京:化学工业出版社, 2009:271-273.
[2] 董慧民, 安学锋, 益小苏,等. 纤维增强聚合物基复合材料低速冲击研究进展[J]. 材料工程, 2015, 43(5):89-100. DONG H M, AN X F, YI X S,et al. Progress in research on low velocity impact properties of fibre reinforced polymer matrix composite[J]. Journal of Materials Engineering, 2015, 43(5):89-100.
[3] HAZIZAN M A, CANTWELL W J. The low velocity impact response of an aluminum honeycomb sandwich structure[J]. Composites Part B, 2003,34(8):679-687.
[4] 谢宗蕻,苏霓,张磊,等. 复合材料蜂窝夹芯板低速冲击损伤扩展特性[J]. 南京航空航天大学学报,2009,41(1):30-35. XIE Z H, SU N, ZHANG L,et al. Damage propagation behavior of composite honeycomb sandwich panels under low-velocity impact[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2009, 41(1):30-35.
[5] 朱飞, 还大军, 肖军,等. X-cor夹层结构低速冲击实验和数值模拟研究[J]. 航空材料学报, 2017, 37(2):28-37. ZHU F, HUAN D J, XIAO J,et al. Experimental and numeral investigation on X-cor sandwich structure under low-velocity impact[J]. Journal of Aeronautical Materials, 2017, 37(2):28-37.
[6] 梁小林, 许希武, 林智育.复合材料层板低速冲击后疲劳性能实验研究[J].材料工程,2016,44(12):100-106. LIANG X L, XU X W, LIN Z Y. Fatigue performance of composite laminates after low-velocity impact[J]. Journal of Materials Engineering,2016,44(12):100-106.
[7] TAN C Y, AKIL H M. Impact response of fiber metal laminate sandwich composite structure with polypropylene honeycomb core[J]. Composites:Part B, 2012, 43:1433-1438.
[8] ABDULLAH A, MUSTAFA Ö B, ONUR Ç,et al. The influence of low velocity repeated impacts on residual compressive properties of honeycomb sandwich structures[J].Composite Structures, 2015,125:425-433.
[9] CRUPI V, EPASTO G, GUGLIELMINO E. Comparison of aluminium sandwiches for lightweight ship structures:honeycomb vs foam[J]. Marine Structures, 2013, 30:74-96.
[10] KAPIL M, TICK H Y, SRIDHAR I. Impact response of aluminum foam core sandwich structures[J]. Materials Science and Engineering:A, 2011, 529:94-101.
[11] YUAN J Y, CHEN X, ZHOU W W,et al. Study on quasi-static compressive properties of aluminum foam-epoxy resin composite structures[J]. Composites Part B, 2015, 79:301-310.
[12] SUN Z, HU X Z, SUN S Y. Energy-absorption enhancement in carbon-fiber aluminum-foam sandwich structures from short aramid-fiber interfacial reinforcement[J]. Composites Science and Technology, 2013, 77:14-21.
[13] CRUPI V, KARA E, EPASTO G, et al. Prediction model for the impact response of glass fibre reinforced aluminium foam sandwiches[J]. International Journal of Impact Engineering,2015, 77:97-107.
[14] YOSHIHIKO H, NAOVUKI K, TAKAO U, et al. Drop weight impact behavior of functionally graded aluminum foam consisting of A1050 and A6061 aluminum alloys[J]. Materials Science & Engineering:A, 2015, 639(15):597-603.
[15] SINGH A, DAVIDSON B, EISENBERG D, et al. Barely visible impact damage evaluation of composite sandwich structures[C]//51st AIAA/ASME/ASCE/AHS/ASC Sturctures, Structural Dynamics, and Materials conference, Florida:American Institute of Aeronautics and Astronautics, 2010:1-7.
[16] 张俊琪,刘龙权,汪海.薄面板复合材料蜂窝夹层结构冲击试验[J].复合材料学报,2014,31(4):1063-1071. ZHANG J Q, LIU L Q, WANG H.Test of composite honeycomb sandwich structure with thin facesheets subject to impact load[J]. Acta Materiae Compositae Sinica, 2014, 31(4):1063-1071.
[17] American Society for Testing and Materials. Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event:ASTM D7136M-12[S]. Pennsylvania:American Society for Testing and Materials, 2012.
[18] PARK J H, HA S K, KANG K W. Impact damage resistance of sandwich structure subjected to low velocity impact[J]. Journal of Materials Processing Technology, 2008,201:425-430.
[1] 陈菁, 顾轶卓, 杨中甲, 李敏, 王绍凯, 张佐光. 高温处理对几种玄武岩纤维成分和拉伸性能的影响[J]. 材料工程, 2017, 45(6): 61-66.
[2] 罗强, 刘思维, 陈勇, 周军, 何琨. 热老化对316LN不锈钢焊缝微观组织和冲击性能的影响[J]. 材料工程, 2017, 45(12): 25-29.
[3] 单杭英, 肖军, 李宁, 尚伟, 张向阳. X-cor夹层结构的剪切模量实验与分析[J]. 材料工程, 2014, 0(5): 59-65.
[4] 强斌, 刘宇杰, 阚前华. 粘接界面泡沫铝夹芯板的三点弯曲失效数值模拟[J]. 材料工程, 2014, 0(11): 97-101.
[5] 郭霞, 关志东, 刘遂, 晏冬秀, 刘卫平, 孙凯. 修理工艺对边缘封闭蜂窝夹层结构弯曲性能的影响[J]. 材料工程, 2013, 0(12): 27-31.
[6] 魏化震, 张清辉, 李锦文. 玄武岩纤维增强酚醛树脂复合材料高温热分析研究[J]. 材料工程, 2013, 0(1): 64-67,84.
[7] 党旭丹, 卫萌, 肖军. X-cor夹层结构拉伸模量有限元分析[J]. 材料工程, 2012, 0(6): 80-85.
[8] 陈江, 黄兴民, 高杰维, 董海, 戴光泽. 低镍球墨铸铁低温冲击性能及断裂机理研究[J]. 材料工程, 2012, 0(12): 33-38.
[9] 党旭丹, 谭永刚, 肖军, 李勇, 原永虎. X-cor夹层结构压缩模量有限元分析[J]. 材料工程, 2009, 0(1): 50-54.
[10] 党旭丹, 肖军, 李勇. X-cor夹层结构复合材料力学性能实验研究进展[J]. 材料工程, 2008, 0(6): 76-80.
[11] 庄园园, 司小娟, 陈建军, 程丹丹, Jeong Cheol Kim, 王依民. UHMWPP/UHMWPE合金纤维结晶能力与结晶活化能研究[J]. 材料工程, 2008, 0(10): 239-242.
[12] 陈永楠, 梁戈, 张从容, 赵康. SiO2/Al2O3复合包覆TiH2颗粒发泡剂的制备[J]. 材料工程, 2006, 0(2): 23-25,55.
[13] 魏鹏, 柳林. 孔径可调的泡沫铝材料制备研究[J]. 材料工程, 2005, 0(9): 30-33.
[14] 杨思一, 吕广庶. 渗流铸造泡沫铝合金性能的测试研究[J]. 材料工程, 2005, 0(3): 52-54.
[15] 王全胜, 王江波, 王富耻, 吕广庶. 梯度热障涂层热冲击性能研究[J]. 材料工程, 1999, 0(11): 19-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn