Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (3): 28-33    DOI: 10.11868/j.issn.1001-4381.2016.000904
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
不同填料复配对尼龙6/石墨烯复合材料导热性能的影响
宋娜1, 崔思奇1, 焦德金1, 侯兴双1, 刘建影2, 丁鹏1, 施利毅1
1. 上海大学 纳米材料与科技研究中心, 上海 200444;
2. 上海大学 机电工程与自动化学院中瑞系统集成技术中心, 上海 200444
Influence of Hybrid Fillers on Thermal Conductivity of Nylon-6/Graphene Composites
SONG Na1, CUI Si-qi1, JIAO De-jin1, HOU Xing-shuang1, LIU Jian-ying2, DING Peng1, SHI Li-yi1
1. Research Center of Nanoscience and Nanotechnology, Shanghai University, Shanghai 200444, China;
2. SMIT Center, School of Mechanical Engineering and Automation, Shanghai University, Shanghai 200444, China
全文: PDF(2660 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 高分子材料的绝热特性极大地限制了其作为导热材料在工业中的应用。选用多层石墨烯作为导热填料,并分别与导热填料氧化铝(Al2O3)和碳化硅(SiC)复配,探究导热填料的复配对尼龙6(PA6)复合材料导热性能的影响。加入质量分数为3%石墨烯时,PA6复合材料的热导率为0.548W·m-1·K-1,相比PA6基体提高161%。通过调节石墨烯与Al2O3和SiC复配的比例以及复合填料量,PA6复合材料的热导率可控在0.653~4.307W·m-1·K-1之间,最高是PA6基体的20倍。为拓展石墨烯在导热材料方面的应用及PA6导热材料在工业上应用提供了有价值的实验依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋娜
崔思奇
焦德金
侯兴双
刘建影
丁鹏
施利毅
关键词 尼龙6石墨烯两步法填料复配导热性能    
Abstract:The thermal insulating properties of polymer greatly restrict the application of polymer as the thermal conductivity materials in industry. Multilayer graphene was chosen as a filler due to its unique thermal transfer property. The effect of alumina oxide (Al2O3) and silicon carbide (SiC) with graphene as hybrid fillers on thermal conductivity of polymers was also explored. The thermal conductivity of the composites enhances 161% with 3%(mass fraction) graphene content compared to pure nylon-6(PA6). The thermal conductivity of PA6 composites is within 0.653-4.307W·m-1·K-1 by adjusting hybrid fillers content and the ratio of graphene with Al2O3 and SiC. The best thermal conductivity is 20 times higher than the pure PA6. It is no doubt that the exploration can provide valuable experimental basis for extending the utilization of graphene as thermal conductivity filler and the application of PA6 thermal conductivity materials in industry.
Key wordsnylon-6    graphene    two-step method    hybrid filler    thermal conductivity
收稿日期: 2016-07-22      出版日期: 2018-03-20
中图分类号:  TQ327.8  
基金资助: 
通讯作者: 宋娜(1981-),女,讲师,博士,研究方向为导热高分子材料,E-mail:snlxf@shu.edu.cn;丁鹏(1981-),男,研究员,博士,研究方向为多功能复合材料,E-mail:dingpeng@shu.edu.cn     E-mail: snlxf@shu.edu.cn;dingpeng@shu.edu.cn
引用本文:   
宋娜, 崔思奇, 焦德金, 侯兴双, 刘建影, 丁鹏, 施利毅. 不同填料复配对尼龙6/石墨烯复合材料导热性能的影响[J]. 材料工程, 2018, 46(3): 28-33.
SONG Na, CUI Si-qi, JIAO De-jin, HOU Xing-shuang, LIU Jian-ying, DING Peng, SHI Li-yi. Influence of Hybrid Fillers on Thermal Conductivity of Nylon-6/Graphene Composites. Journal of Materials Engineering, 2018, 46(3): 28-33.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000904      或      http://jme.biam.ac.cn/CN/Y2018/V46/I3/28
[1] MONTEVERDE F, SCATTEIA L. Resistance to thermal shock and to oxidation of metal diborides-SiC ceramics for aerospace application[J]. Journal of the American Ceramic Society,2007,90(4):1130-1138.
[2] BALANDIN A A. Thermal properties of graphene and nanostructured carbon materials[J]. Nature Materials, 2011,10(8):569-581.
[3] YAN Z, LIU G, KHAN J M, et al. Graphene quilts for thermal management of high-power GaN transistors[J]. Nature Communications,2012,3:827-834.
[4] DROVAL G, FELLER J F, SALAGNAC P, et al. Rheological properties of conductive polymer composite (CPC) filled with double percolated network of carbon nanoparticles and boron nitride powder[J]. E-Polymers, 2013, 9(1):261-277.
[5] BURGER N, LAACHACHI A, MORTAZAVI B, et al. Alignments and network of graphite fillers to improve thermal conductivity of epoxy-based composites[J]. International Journal of Heat and Mass Transfer, 2015,89:505-513.
[6] 周文英, 齐暑华, 涂春潮,等. 导热硅橡胶复合材料研究[J]. 航空材料学报,2007, 27(1):33-36. ZHOU W Y, QI S H, TU C C, et al. Thermally conductive silicone rubber composites[J]. Journal of Aeronautical Materials, 2007,27(1):33-36.
[7] HWANG Y, KIM J, CHO W. Thermal conductivity of thermally conductive ceramic composites and silicon carbide/epoxy composites through wetting process[J]. Polymer-Korea, 2014,38(6):782-786.
[8] KONG Q Q, LIU Z, GAO J G, et al. Hierarchical graphene-carbon fiber composite paper as a flexible lateral heat spreader[J]. Advanced Functional Materials, 2014,24(27):4222-4228.
[9] BIERCUK M, LLAGUNO M C, RADOSAVLJEVIC M, et al. Carbon nanotube composites for thermal management[J]. Applied Physics Letters, 2002,80(15):2767-2769.
[10] SHI J N, GER M D, LIU Y M, et al. Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives[J]. Carbon, 2013,51:365-372.
[11] SHTEIN M, NADIV R, BUZAGLO M, et al. Thermally conductive graphene-polymer composites:size, percolation, and synergy effects[J]. Chemistry of Materials, 2015,27(6):2100-2106.
[12] 李娜, 马兆昆, 陈铭, 等. 石墨烯/聚酰亚胺复合石墨纤维的结构与性能[J]. 材料工程, 2017,45(9):31-37. LI N, MA Z K, CHEN M, et al. Structures and performance of graphene/polyimide composite graphite fibers[J]. Journal of Materials Engineering, 2017,45(9):31-37.
[13] PARK W, HU J, JAUREGUI L A, et al. Electrical and thermal conductivities of reduced graphene oxide/polystyrene composites[J]. Applied Physics Letters, 2014,104(11):113101.
[14] 汪文, 丁宏亮, 张子宽, 等. 石墨烯微片/聚丙烯导热复合材料的制备与性能[J]. 复合材料学报, 2013,30(6):14-20. WANG W,DING H L,ZHANG Z K,et al.Preparation and properties of graphene nanoplatelets/PP thermal conductive composites[J]. Acta Materiae Compositae Sinica, 2013,30(6):14-20.
[15] HAUSER R A, KEITH J M, KING J A, et al. Thermal conductivity models for single and multiple filler carbon/liquid crystal polymer composites[J]. Journal of Applied Polymer Science,2008,110(5):2914-2923.
[16] MA A J, LI H C, CHEN W X, et al. Improved thermal conductivity of silicon carbide/carbon fiber/epoxy resin composites[J]. Polymer-Plastics Technology and Engineering, 2013,52(3):295-299.
[17] DING P, SU S, SONG N, et al. Highly thermal conductive composites with polyamide-6 covalently-grafted graphene by an in situ polymerization and thermal reduction process[J]. Carbon, 2014,66:576-584.
[18] DING P, ZHUANG N, CUI X, et al. Enhanced thermal conductive property of polyamide composites by low mass fraction of covalently grafted graphene nanoribbons[J]. Journal of Materials Chemistry C,2015,3(42):10990-10997.
[19] CUI X, DING P, ZHUANG N, et al. Thermal conductive and mechanical properties of polymeric composites based on solution-exfoliated boron nitride and graphene nanosheets:a morphology-promoted synergistic effect[J]. ACS Applied Materials & Interfaces,2015,7(34):19068-19075.
[20] SONG N, YANG J, DING P, et al. Effect of polymer modifier chain length on thermal conductive property of polyamide 6/graphene nanocomposites[J]. Composites Part A, 2015,73:232-241.
[21] SONG N, JIAO D, DING P, et al. Anisotropic thermally conductive flexible films based on nanofibrillated cellulose and aligned graphene nanosheets[J]. Journal of Materials Chemistry C,2016,4(2):305-314.
[22] SEVOSTIANOV I, KACHANOV M. Connection between elastic moduli and thermal conductivities of anisotropic short fiber reinforced thermoplastics:theory and experimental verification[J]. Materials Science and Engineering:A, 2003,360(1/2):339-344.
[23] FERRARI A C, BASKO D M. Raman spectroscopy as a versatile tool for studying the properties of graphene[J]. Nature Nanotechnology,2013,8(4):235-246.
[24] SONG N, YANG J, DING P, et al. Effect of covalent-functionalized graphene oxide with polymer and reactive compatibilization on thermal properties of maleic anhydride grafted polypropylene[J]. Industrial & Engineering Chemistry Research, 2014,53(51):19951-19960.
[1] 王晨, 燕绍九, 南文争, 陈翔. 表面活性剂对高浓度石墨烯水分散液制备的影响[J]. 材料工程, 2019, 47(7): 50-56.
[2] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
[3] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
[4] 王晨, 燕绍九, 南文争, 王继贤, 彭思侃. 高浓度石墨烯水分散液的制备与表征[J]. 材料工程, 2019, 47(4): 56-63.
[5] 卢子龙, 安立宝, 刘扬. 不同浓度硼掺杂石墨烯吸附多层金原子的第一性原理研究[J]. 材料工程, 2019, 47(4): 64-70.
[6] 李芹, 盛利成, 董丽敏, 张彦飞, 金立国. ZnCo2O4及ZnCo2O4/rGO复合材料的制备与电化学性能[J]. 材料工程, 2019, 47(4): 71-76.
[7] 王继刚, 余永志, 邹婧叶, 孟江, 李淑萍, 蒋南. 基于微波辐照合成类石墨烯氮化碳的研究进展[J]. 材料工程, 2019, 47(4): 15-24.
[8] 邹婧叶, 余永志, 顾永攀, 岳夏薇, 孟江, 李淑萍, 王继刚. 高能微波辐照合成类石墨烯氮化碳纳米片的结构特征[J]. 材料工程, 2019, 47(3): 1-7.
[9] 赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙. 石墨烯纳米片增强铝基复合材料的动态力学行为[J]. 材料工程, 2019, 47(3): 23-29.
[10] 余煜玺, 夏范森, 黄奇凡. 石墨烯改性PDC-SiCNO陶瓷的制备及其介电性能[J]. 材料工程, 2019, 47(3): 8-14.
[11] 杨宇凯, 张宝, 王旭东, 张虎生, 武岳, 关永军. 石墨烯及碳化硅增强铝基复合材料的冲击力学行为[J]. 材料工程, 2019, 47(3): 15-22.
[12] 张丹丹, 沈洪雷, 曹霞, 叶煜松, 张啸, 叶历, 王梦秋. 石墨烯增强金属基航空复合材料研究进展[J]. 材料工程, 2019, 47(1): 1-10.
[13] 李秀辉, 燕绍九, 洪起虎, 赵双赞, 陈翔. 石墨烯添加量对铜基复合材料性能的影响[J]. 材料工程, 2019, 47(1): 11-17.
[14] 孟祥龙, 衣明东, 肖光春, 陈照强, 许崇海. 石墨烯纳米片增韧Al2O3基纳米复合陶瓷刀具材料[J]. 材料工程, 2019, 47(1): 25-31.
[15] 周铁路, 刘会娥, 陈爽, 丁传芹, 齐选良. 诱导助剂对石墨烯负载的TiO2颗粒分布、结构和光催化活性的影响[J]. 材料工程, 2018, 46(8): 43-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn